比较运算符用于比较两个值的大小,然后返回一个布尔值,表示是否满足指定的条件。
2 > 1 // true
上面代码比较2
是否大于1
,返回true
。
注意,比较运算符可以比较各种类型的值,不仅仅是数值。
JavaScript 一共提供了8个比较运算符。
<
小于运算符>
大于运算符<=
小于或等于运算符>=
大于或等于运算符==
相等运算符===
严格相等运算符!=
不相等运算符!==
严格不相等运算符这八个比较运算符分成两类:相等比较和非相等比较。两者的规则是不一样的,对于非相等的比较,算法是先看两个运算子是否都是字符串,如果是的,就按照字典顺序比较(实际上是比较 Unicode 码点);否则,将两个运算子都转成数值,再比较数值的大小。
字符串按照字典顺序进行比较。
'cat' > 'dog' // false
'cat' > 'catalog' // false
JavaScript 引擎内部首先比较首字符的 Unicode 码点。如果相等,再比较第二个字符的 Unicode 码点,以此类推。
'cat' > 'Cat' // true'
上面代码中,小写的c
的 Unicode 码点(99
)大于大写的C
的 Unicode 码点(67
),所以返回true
。
由于所有字符都有 Unicode 码点,因此汉字也可以比较。
'大' > '小' // false
上面代码中,“大”的 Unicode 码点是22823,“小”是23567,因此返回false
。
(1)原始类型的值
两个原始类型的值的比较,除了相等运算符(==
)和严格相等运算符(===
),其他比较运算符都是先转成数值再比较。
5 > '4' // true
// 等同于 5 > Number('4')
// 即 5 > 4
true > false // true
// 等同于 Number(true) > Number(false)
// 即 1 > 0
2 > true // true
// 等同于 2 > Number(true)
// 即 2 > 1
上面代码中,字符串和布尔值都会先转成数值,再进行比较。
这里有一个特殊情况,即任何值(包括NaN
本身)与NaN
比较,返回的都是false
。
1 > NaN // false
1 <= NaN // false
'1' > NaN // false
'1' <= NaN // false
NaN > NaN // false
NaN <= NaN // false
(2)对象
如果运算子是对象,会转为原始类型的值,再进行比较。
对象转换成原始类型的值,算法是先调用valueOf
方法;如果返回的还是对象,再接着调用toString
方法,详细解释参见《数据类型的转换》一章。
var x = [2];
x > '11' // true
// 等同于 [2].valueOf().toString() > '11'
// 即 '2' > '11'
x.valueOf = function () { return '1' };
x > '11' // false
// 等同于 [2].valueOf() > '11'
// 即 '1' > '11'
两个对象之间的比较也是如此。
[2] > [1] // true
// 等同于 [2].valueOf().toString() > [1].valueOf().toString()
// 即 '2' > '1'
[2] > [11] // true
// 等同于 [2].valueOf().toString() > [11].valueOf().toString()
// 即 '2' > '11'
{x: 2} >= {x: 1} // true
// 等同于 {x: 2}.valueOf().toString() >= {x: 1}.valueOf().toString()
// 即 '[object Object]' >= '[object Object]'
注意,Date 对象实例用于比较时,是先调用toString
方法。如果返回的不是原始类型的值,再接着对返回值调用valueOf
方法。
JavaScript 提供两种相等运算符:==
和===
。
简单说,它们的区别是相等运算符(==
)比较两个值是否相等,严格相等运算符(===
)比较它们是否为“同一个值”。如果两个值不是同一类型,严格相等运算符(===
)直接返回false
,而相等运算符(==
)会将它们转换成同一个类型,再用严格相等运算符进行比较。
严格相等运算符的算法如下。
(1)不同类型的值
如果两个值的类型不同,直接返回false
。
1 === "1" // false
true === "true" // false
上面代码比较数值的1
与字符串的“1”、布尔值的true
与字符串"true"
,因为类型不同,结果都是false
。
(2)同一类的原始类型值
同一类型的原始类型的值(数值、字符串、布尔值)比较时,值相同就返回true
,值不同就返回false
。
1 === 0x1 // true
上面代码比较十进制的1
与十六进制的1
,因为类型和值都相同,返回true
。
需要注意的是,NaN
与任何值都不相等(包括自身)。另外,正0
等于负0
。
NaN === NaN // false
+0 === -0 // true
(3)复合类型值
两个复合类型(对象、数组、函数)的数据比较时,不是比较它们的值是否相等,而是比较它们是否指向同一个地址。
{} === {} // false
[] === [] // false
(function () {} === function () {}) // false
上面代码分别比较两个空对象、两个空数组、两个空函数,结果都是不相等。原因是对于复合类型的值,严格相等运算比较的是,它们是否引用同一个内存地址,而运算符两边的空对象、空数组、空函数的值,都存放在不同的内存地址,结果当然是false
。
如果两个变量引用同一个对象,则它们相等。
var v1 = {};
var v2 = v1;
v1 === v2 // true
注意,对于两个对象的比较,严格相等运算符比较的是地址,而大于或小于运算符比较的是值。
new Date() > new Date() // false
new Date() < new Date() // false
new Date() === new Date() // false
上面的三个表达式,前两个比较的是值,最后一个比较的是地址,所以都返回false
。
(4)undefined 和 null
undefined
和null
与自身严格相等。
undefined === undefined // true
null === null // true
由于变量声明后默认值是undefined
,因此两个只声明未赋值的变量是相等的。
var v1;
var v2;
v1 === v2 // true
(5)严格不相等运算符
严格相等运算符有一个对应的“严格不相等运算符”(!==
),它的算法就是先求严格相等运算符的结果,然后返回相反值。
1 !== '1' // true
相等运算符用来比较相同类型的数据时,与严格相等运算符完全一样。
比较不同类型的数据时,相等运算符会先将数据进行类型转换,然后再用严格相等运算符比较。类型转换规则如下。
(1)原始类型的值
原始类型的数据会转换成数值类型再进行比较。
1 == true // true
// 等同于 1 === Number(true)
0 == false // true
// 等同于 0 === Number(false)
2 == true // false
// 等同于 2 === Number(true)
2 == false // false
// 等同于 2 === Number(false)
'true' == true // false
// 等同于 Number('true') === Number(true)
// 等同于 NaN === 1
'' == 0 // true
// 等同于 Number('') === 0
// 等同于 0 === 0
'' == false // true
// 等同于 Number('') === Number(false)
// 等同于 0 === 0
'1' == true // true
// 等同于 Number('1') === Number(true)
// 等同于 1 === 1
'\n 123 \t' == 123 // true
// 因为字符串转为数字时,省略前置和后置的空格
上面代码将字符串和布尔值都转为数值,然后再进行比较。具体的字符串与布尔值的类型转换规则,参见《数据类型转换》一章。
(2)对象与原始类型值比较
对象(这里指广义的对象,包括数组和函数)与原始类型的值比较时,对象转化成原始类型的值,再进行比较。
[1] == 1 // true
// 等同于 Number([1]) == 1
[1] == '1' // true
// 等同于 Number([1]) == Number('1')
[1] == true // true
// 等同于 Number([1]) == Number(true)
上面代码中,数组[1]
与数值进行比较,会先转成数值,再进行比较;与字符串进行比较,会先转成数值,然后再与字符串进行比较,这时字符串也会转成数值;与布尔值进行比较,两个运算子都会先转成数值,然后再进行比较。
(3)undefined 和 null
undefined
和null
与其他类型的值比较时,结果都为false
,它们互相比较时结果为true
。
false == null // false
false == undefined // false
0 == null // false
0 == undefined // false
undefined == null // true
绝大多数情况下,对象与undefined
和null
比较,都返回false
。只有在对象转为原始值得到undefined
时,才会返回true
,这种情况是非常罕见的。
(4)相等运算符的缺点
相等运算符隐藏的类型转换,会带来一些违反直觉的结果。
0 == '' // true
0 == '0' // true
2 == true // false
2 == false // false
false == 'false' // false
false == '0' // true
false == undefined // false
false == null // false
null == undefined // true
' \t\r\n ' == 0 // true
上面这些表达式都很容易出错,因此不要使用相等运算符(==
),最好只使用严格相等运算符(===
)。
(5)不相等运算符
相等运算符有一个对应的“不相等运算符”(!=
),两者的运算结果正好相反。
1 != '1' // false
布尔运算符用于将表达式转为布尔值,一共包含四个运算符。
!
&&
||
?:
取反运算符是一个感叹号,用于将布尔值变为相反值,即true
变成false
,false
变成true
。
!true // false
!false // true
对于非布尔值,取反运算符会将其转为布尔值。可以这样记忆,以下六个值取反后为true
,其他值都为false
。
undefined
null
false
0
NaN
''
)!undefined // true
!null // true
!0 // true
!NaN // true
!"" // true
!54 // false
!'hello' // false
![] // false
!{} // false
上面代码中,不管什么类型的值,经过取反运算后,都变成了布尔值。
如果对一个值连续做两次取反运算,等于将其转为对应的布尔值,与Boolean
函数的作用相同。这是一种常用的类型转换的写法。
!!x
// 等同于
Boolean(x)
上面代码中,不管x
是什么类型的值,经过两次取反运算后,变成了与Boolean
函数结果相同的布尔值。所以,两次取反就是将一个值转为布尔值的简便写法。
且运算符(&&
)往往用于多个表达式的求值。
它的运算规则是:如果第一个运算子的布尔值为true
,则返回第二个运算子的值(注意是值,不是布尔值);如果第一个运算子的布尔值为false
,则直接返回第一个运算子的值,且不再对第二个运算子求值。
't' && '' // ""
't' && 'f' // "f"
't' && (1 + 2) // 3
'' && 'f' // ""
'' && '' // ""
var x = 1;
(1 - 1) && ( x += 1) // 0
x // 1
上面代码的最后一个例子,由于且运算符的第一个运算子的布尔值为false
,则直接返回它的值0
,而不再对第二个运算子求值,所以变量x
的值没变。
这种跳过第二个运算子的机制,被称为“短路”。有些程序员喜欢用它取代if
结构,比如下面是一段if
结构的代码,就可以用且运算符改写。
if (i) {
doSomething();
}
// 等价于
i && doSomething();
上面代码的两种写法是等价的,但是后一种不容易看出目的,也不容易除错,建议谨慎使用。
且运算符可以多个连用,这时返回第一个布尔值为false
的表达式的值。
true && 'foo' && '' && 4 && 'foo' && true
// ''
上面代码中,第一个布尔值为false
的表达式为第三个表达式,所以得到一个空字符串。
或运算符(||
)也用于多个表达式的求值。它的运算规则是:如果第一个运算子的布尔值为true
,则返回第一个运算子的值,且不再对第二个运算子求值;如果第一个运算子的布尔值为false
,则返回第二个运算子的值。
't' || '' // "t"
't' || 'f' // "t"
'' || 'f' // "f"
'' || '' // ""
短路规则对这个运算符也适用。
var x = 1;
true || (x = 2) // true
x // 1
上面代码中,且运算符的第一个运算子为true
,所以直接返回true
,不再运行第二个运算子。所以,x
的值没有改变。这种只通过第一个表达式的值,控制是否运行第二个表达式的机制,就称为“短路”(short-cut)。
或运算符可以多个连用,这时返回第一个布尔值为true
的表达式的值。
false || 0 || '' || 4 || 'foo' || true
// 4
上面代码中第一个布尔值为true
的表达式是第四个表达式,所以得到数值4。
或运算符常用于为一个变量设置默认值。
function saveText(text) {
text = text || '';
// ...
}
// 或者写成
saveText(this.text || '')
上面代码表示,如果函数调用时,没有提供参数,则该参数默认设置为空字符串。
三元条件运算符由问号(?)和冒号(:)组成,分隔三个表达式。它是 JavaScript 语言唯一一个需要三个运算子的运算符。如果第一个表达式的布尔值为true
,则返回第二个表达式的值,否则返回第三个表达式的值。
't' ? 'hello' : 'world' // "hello"
0 ? 'hello' : 'world' // "world"
上面代码的t
和0
的布尔值分别为true
和false
,所以分别返回第二个和第三个表达式的值。
通常来说,三元条件表达式与if...else
语句具有同样表达效果,前者可以表达的,后者也能表达。但是两者具有一个重大差别,if...else
是语句,没有返回值;三元条件表达式是表达式,具有返回值。所以,在需要返回值的场合,只能使用三元条件表达式,而不能使用if..else
。
console.log(true ? 'T' : 'F');
上面代码中,console.log
方法的参数必须是一个表达式,这时就只能使用三元条件表达式。如果要用if...else
语句,就必须改变整个代码写法了。
位运算符用于直接对二进制位进行计算,一共有7个。
|
,表示若两个二进制位都为0
,则结果为0
,否则为1
。&
,表示若两个二进制位都为1,则结果为1,否则为0。~
,表示对一个二进制位取反。^
,表示若两个二进制位不相同,则结果为1,否则为0。<<
,详见下文解释。>>
,详见下文解释。>>>
,详见下文解释。这些位运算符直接处理每一个比特位(bit),所以是非常底层的运算,好处是速度极快,缺点是很不直观,许多场合不能使用它们,否则会使代码难以理解和查错。
有一点需要特别注意,位运算符只对整数起作用,如果一个运算子不是整数,会自动转为整数后再执行。另外,虽然在 JavaScript 内部,数值都是以64位浮点数的形式储存,但是做位运算的时候,是以32位带符号的整数进行运算的,并且返回值也是一个32位带符号的整数。
i = i | 0;
上面这行代码的意思,就是将i
(不管是整数或小数)转为32位整数。
利用这个特性,可以写出一个函数,将任意数值转为32位整数。
function toInt32(x) {
return x | 0;
}
上面这个函数将任意值与0
进行一次或运算,这个位运算会自动将一个值转为32位整数。下面是这个函数的用法。
toInt32(1.001) // 1
toInt32(1.999) // 1
toInt32(1) // 1
toInt32(-1) // -1
toInt32(Math.pow(2, 32) + 1) // 1
toInt32(Math.pow(2, 32) - 1) // -1
上面代码中,toInt32
可以将小数转为整数。对于一般的整数,返回值不会有任何变化。对于大于2的32次方的整数,大于32位的数位都会被舍去。
二进制或运算符(|
)逐位比较两个运算子,两个二进制位之中只要有一个为1
,就返回1
,否则返回0
。
0 | 3 // 3
上面代码中,0
和3
的二进制形式分别是00
和11
,所以进行二进制或运算会得到11
(即3
)。
位运算只对整数有效,遇到小数时,会将小数部分舍去,只保留整数部分。所以,将一个小数与0
进行二进制或运算,等同于对该数去除小数部分,即取整数位。
2.9 | 0 // 2
-2.9 | 0 // -2
需要注意的是,这种取整方法不适用超过32位整数最大值2147483647
的数。
2147483649.4 | 0;
// -2147483647
二进制与运算符(&
)的规则是逐位比较两个运算子,两个二进制位之中只要有一个位为0
,就返回0
,否则返回1
。
0 & 3 // 0
上面代码中,0(二进制00
)和3(二进制11
)进行二进制与运算会得到00
(即0
)。
二进制否运算符(~
)将每个二进制位都变为相反值(0
变为1
,1
变为0
)。它的返回结果有时比较难理解,因为涉及到计算机内部的数值表示机制。
~ 3 // -4
上面表达式对3
进行二进制否运算,得到-4
。之所以会有这样的结果,是因为位运算时,JavaScirpt 内部将所有的运算子都转为32位的二进制整数再进行运算。
3
的32位整数形式是00000000000000000000000000000011
,二进制否运算以后得到11111111111111111111111111111100
。由于第一位(符号位)是1,所以这个数是一个负数。JavaScript 内部采用补码形式表示负数,即需要将这个数减去1,再取一次反,然后加上负号,才能得到这个负数对应的10进制值。这个数减去1等于11111111111111111111111111111011
,再取一次反得到00000000000000000000000000000100
,再加上负号就是-4
。考虑到这样的过程比较麻烦,可以简单记忆成,一个数与自身的取反值相加,等于-1。
~ -3 // 2
上面表达式可以这样算,-3
的取反值等于-1
减去-3
,结果为2
。
对一个整数连续两次二进制否运算,得到它自身。
~~3 // 3
所有的位运算都只对整数有效。二进制否运算遇到小数时,也会将小数部分舍去,只保留整数部分。所以,对一个小数连续进行两次二进制否运算,能达到取整效果。
~~2.9 // 2
~~47.11 // 47
~~1.9999 // 1
~~3 // 3
使用二进制否运算取整,是所有取整方法中最快的一种。
对字符串进行二进制否运算,JavaScript 引擎会先调用Number
函数,将字符串转为数值。
// 相当于~Number('011')
~'011' // -12
// 相当于~Number('42 cats')
~'42 cats' // -1
// 相当于~Number('0xcafebabe')
~'0xcafebabe' // 889275713
// 相当于~Number('deadbeef')
~'deadbeef' // -1
Number
函数将字符串转为数值的规则,参见《数据的类型转换》一章。
对于其他类型的值,二进制否运算也是先用Number
转为数值,然后再进行处理。
// 相当于 ~Number([])
~[] // -1
// 相当于 ~Number(NaN)
~NaN // -1
// 相当于 ~Number(null)
~null // -1
异或运算(^
)在两个二进制位不同时返回1
,相同时返回0
。
0 ^ 3 // 3
上面表达式中,0
(二进制00
)与3
(二进制11
)进行异或运算,它们每一个二进制位都不同,所以得到11
(即3
)。
“异或运算”有一个特殊运用,连续对两个数a
和b
进行三次异或运算,a^=b; b^=a; a^=b;
,可以互换它们的值。这意味着,使用“异或运算”可以在不引入临时变量的前提下,互换两个变量的值。
var a = 10;
var b = 99;
a ^= b, b ^= a, a ^= b;
a // 99
b // 10
这是互换两个变量的值的最快方法。
异或运算也可以用来取整。
12.9 ^ 0 // 12
左移运算符(<<
)表示将一个数的二进制值向左移动指定的位数,尾部补0
,即乘以2
的指定次方(最高位即符号位不参与移动)。
// 4 的二进制形式为100,
// 左移一位为1000(即十进制的8)
// 相当于乘以2的1次方
4 << 1
// 8
-4 << 1
// -8
上面代码中,-4
左移一位得到-8
,是因为-4
的二进制形式是11111111111111111111111111111100
,左移一位后得到11111111111111111111111111111000
,该数转为十进制(减去1后取反,再加上负号)即为-8
。
如果左移0位,就相当于将该数值转为32位整数,等同于取整,对于正数和负数都有效。
13.5 << 0
// 13
-13.5 << 0
// -13
左移运算符用于二进制数值非常方便。
var color = {r: 186, g: 218, b: 85};
// RGB to HEX
// (1 << 24)的作用为保证结果是6位数
var rgb2hex = function(r, g, b) {
return '#' + ((1 << 24) + (r << 16) + (g << 8) + b)
.toString(16) // 先转成十六进制,然后返回字符串
.substr(1); // 去除字符串的最高位,返回后面六个字符串
}
rgb2hex(color.r, color.g, color.b)
// "#bada55"
上面代码使用左移运算符,将颜色的 RGB 值转为 HEX 值。
右移运算符(>>
)表示将一个数的二进制值向右移动指定的位数,头部补0
,即除以2
的指定次方(最高位即符号位不参与移动)。
4 >> 1
// 2
/*
// 因为4的二进制形式为 00000000000000000000000000000100,
// 右移一位得到 00000000000000000000000000000010,
// 即为十进制的2
*/
-4 >> 1
// -2
/*
// 因为-4的二进制形式为 11111111111111111111111111111100,
// 右移一位,头部补1,得到 11111111111111111111111111111110,
// 即为十进制的-2
*/
右移运算可以模拟 2 的整除运算。
5 >> 1
// 2
// 相当于 5 / 2 = 2
21 >> 2
// 5
// 相当于 21 / 4 = 5
21 >> 3
// 2
// 相当于 21 / 8 = 2
21 >> 4
// 1
// 相当于 21 / 16 = 1
带符号位的右移运算符(>>>
)表示将一个数的二进制形式向右移动,包括符号位也参与移动,头部补0
。所以,该运算总是得到正值。对于正数,该运算的结果与右移运算符(>>
)完全一致,区别主要在于负数。
4 >>> 1
// 2
-4 >>> 1
// 2147483646
/*
// 因为-4的二进制形式为11111111111111111111111111111100,
// 带符号位的右移一位,得到01111111111111111111111111111110,
// 即为十进制的2147483646。
*/
这个运算实际上将一个值转为32位无符号整数。
查看一个负整数在计算机内部的储存形式,最快的方法就是使用这个运算符。
-1 >>> 0 // 4294967295
上面代码表示,-1
作为32位整数时,内部的储存形式使用无符号整数格式解读,值为 4294967295(即(2^32)-1
,等于11111111111111111111111111111111
)。
位运算符可以用作设置对象属性的开关。
假定某个对象有四个开关,每个开关都是一个变量。那么,可以设置一个四位的二进制数,它的每个位对应一个开关。
var FLAG_A = 1; // 0001
var FLAG_B = 2; // 0010
var FLAG_C = 4; // 0100
var FLAG_D = 8; // 1000
上面代码设置 A、B、C、D 四个开关,每个开关分别占有一个二进制位。
然后,就可以用二进制与运算检验,当前设置是否打开了指定开关。
var flags = 5; // 二进制的0101
if (flags & FLAG_C) {
// ...
}
// 0101 & 0100 => 0100 => true
上面代码检验是否打开了开关C
。如果打开,会返回true
,否则返回false
。
现在假设需要打开A
、B
、D
三个开关,我们可以构造一个掩码变量。
var mask = FLAG_A | FLAG_B | FLAG_D;
// 0001 | 0010 | 1000 => 1011
上面代码对A
、B
、D
三个变量进行二进制或运算,得到掩码值为二进制的1011
。
有了掩码,二进制或运算可以确保打开指定的开关。
flags = flags | mask;
二进制与运算可以将当前设置中凡是与开关设置不一样的项,全部关闭。
flags = flags & mask;
异或运算可以切换(toggle)当前设置,即第一次执行可以得到当前设置的相反值,再执行一次又得到原来的值。
flags = flags ^ mask;
二进制否运算可以翻转当前设置,即原设置为0
,运算后变为1
;原设置为1
,运算后变为0
。
flags = ~flags;
void
运算符的作用是执行一个表达式,然后不返回任何值,或者说返回undefined
。
void 0 // undefined
void(0) // undefined
上面是void
运算符的两种写法,都正确。建议采用后一种形式,即总是使用圆括号。因为void
运算符的优先性很高,如果不使用括号,容易造成错误的结果。比如,void 4 + 7
实际上等同于(void 4) + 7
。
下面是void
运算符的一个例子。
var x = 3;
void (x = 5) //undefined
x // 5
这个运算符的主要用途是浏览器的书签工具(bookmarklet),以及在超级链接中插入代码防止网页跳转。
请看下面的代码。
点击
上面代码中,点击链接后,会先执行onclick
的代码,由于onclick
返回false
,所以浏览器不会跳转到 example.com。
void
运算符可以取代上面的写法。
文字
下面是一个更实际的例子,用户点击链接提交表单,但是不产生页面跳转。
提交
逗号运算符用于对两个表达式求值,并返回后一个表达式的值。
'a', 'b' // "b"
var x = 0;
var y = (x++, 10);
x // 1
y // 10
上面代码中,逗号运算符返回后一个表达式的值。
JavaScript 各种运算符的优先级别(Operator Precedence)是不一样的。优先级高的运算符先执行,优先级低的运算符后执行。
4 + 5 * 6 // 34
上面的代码中,乘法运算符(*
)的优先性高于加法运算符(+
),所以先执行乘法,再执行加法,相当于下面这样。
4 + (5 * 6) // 34
如果多个运算符混写在一起,常常会导致令人困惑的代码。
var x = 1;
var arr = [];
var y = arr.length <= 0 || arr[0] === undefined ? x : arr[0];
上面代码中,变量y
的值就很难看出来,因为这个表达式涉及5个运算符,到底谁的优先级最高,实在不容易记住。
根据语言规格,这五个运算符的优先级从高到低依次为:小于等于(<=
)、严格相等(===
)、或(||
)、三元(?:
)、等号(=
)。因此上面的表达式,实际的运算顺序如下。
var y = ((arr.length <= 0) || (arr[0] === undefined)) ? x : arr[0];
记住所有运算符的优先级,是非常难的,也是没有必要的。
圆括号(()
)可以用来提高运算的优先级,因为它的优先级是最高的,即圆括号中的表达式会第一个运算。
(4 + 5) * 6 // 54
上面代码中,由于使用了圆括号,加法会先于乘法执行。
运算符的优先级别十分繁杂,且都是硬性规定,因此建议总是使用圆括号,保证运算顺序清晰可读,这对代码的维护和除错至关重要。
顺便说一下,圆括号不是运算符,而是一种语法结构。它一共有两种用法:一种是把表达式放在圆括号之中,提升运算的优先级;另一种是跟在函数的后面,作用是调用函数。
注意,因为圆括号不是运算符,所以不具有求值作用,只改变运算的优先级。
var x = 1;
(x) = 2;
上面代码的第二行,如果圆括号具有求值作用,那么就会变成1 = 2
,这是会报错了。但是,上面的代码可以运行,这验证了圆括号只改变优先级,不会求值。
这也意味着,如果整个表达式都放在圆括号之中,那么不会有任何效果。
(exprssion)
// 等同于
expression
函数放在圆括号中,会返回函数本身。如果圆括号紧跟在函数的后面,就表示调用函数。
function f() {
return 1;
}
(f) // function f(){return 1;}
f() // 1
上面代码中,函数放在圆括号之中会返回函数本身,圆括号跟在函数后面则是调用函数。
圆括号之中,只能放置表达式,如果将语句放在圆括号之中,就会报错。
(var a = 1)
// SyntaxError: Unexpected token var
对于优先级别相同的运算符,大多数情况,计算顺序总是从左到右,这叫做运算符的“左结合”(left-to-right associativity),即从左边开始计算。
x + y + z
上面代码先计算最左边的x
与y
的和,然后再计算与z
的和。
但是少数运算符的计算顺序是从右到左,即从右边开始计算,这叫做运算符的“右结合”(right-to-left associativity)。其中,最主要的是赋值运算符(=
)和三元条件运算符(?:
)。
w = x = y = z;
q = a ? b : c ? d : e ? f : g;
上面代码的运算结果,相当于下面的样子。
w = (x = (y = z));
q = a ? b : (c ? d : (e ? f : g));
上面的两行代码,各有三个等号运算符和三个三元运算符,都是先计算最右边的那个运算符。