- AI助力基因数据分析:用Python玩转生命密码的秘密
Echo_Wish
前沿技术人工智能人工智能数据分析python
AI助力基因数据分析:用Python玩转生命密码的秘密说到基因数据,听起来是不是感觉有点高大上?其实,基因数据分析正变得越来越“接地气”,而AI正是这条路上的神奇钥匙。今天,咱们就用Python聊聊如何利用AI技术做基因数据分析与建模,帮你破解生命的密码,找到疾病预测、个性化医疗的新路子。一、基因数据为何如此特别?基因组测序技术让我们能够获取人体细胞内数以百万计的DNA序列变异信息。但数据量巨大、
- “组学”的数据结构与概念
不秃的卤蛋
组学多组学人工智能深度学习
1.组学数据:生命系统的分子层面快照定义:组学数据是指利用高通量实验技术,对生物样本(细胞、组织、个体等)在特定状态下,某一类生物分子全集进行系统性、大规模定量测量所产生的数据集。核心特征:全局性(Global):目标是对该分子层面尽可能完整的覆盖(如全基因组、全转录组、全蛋白质组),而非单个分子。高通量(High-throughput):依赖先进平台(如二代/三代测序、高分辨率质谱、芯片技术),
- 2025.06.20【pacbio】|PB甲基化分析结果的统计与可视化介绍
文章目录引言1.甲基化分析结果文件简介2.甲基化位点统计分析2.1统计不同类型修饰的数量和分布示例R代码:统计m6A/m4C位点数可视化:不同修饰类型的柱状图2.2甲基化比例分布2.3染色体/基因组分布3.基序(Motif)分析与可视化3.1Motif统计统计不同motif的出现频次3.2motif分布热图(高级)4.覆盖度(测序深度)统计与可视化4.1全基因组覆盖度分布R脚本核心思路ggplot
- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- 大模型在生物信息学中的应用前景
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型在生物信息学中的应用前景关键词:大模型、生物信息学、基因组学、蛋白质组学、应用前景摘要:本文将深入探讨大模型在生物信息学中的应用前景。首先,我们将介绍大模型的基础知识,包括其定义、特点和优势。接着,我们将分析大模型在生物信息学中的问题背景和具体应用场景。然后,我们将详细讲解大模型在生物信息学中的数据处理与分析方法,以及其在基因组学和蛋白质组学中的应用案例。最后,我们将讨论大模型在生物信息学中
- linux bam文件格式,pysam - 多种格式基因组数据(sam/bam/vcf/bcf/cram/…)读写与处理模块(python)...
masaki叔还是这么可爱
linuxbam文件格式
在开发基因组相关流程或工具时,经常需要读取、处理和创建bam、vcf、bcf文件。目前已经有一些主流的处理此类格式文件的工具,如samtools、picard、vcftools、bcftools,但此类工具集成的大多是标准功能,在编程时如果直接调用的话往往显得不够灵活。本文介绍的是一个处理基因组数据的python模块,它打包了htslib-1.3、samtools-1.3和bcftools-1.3
- 基于 Java 的大数据分布式计算在基因编辑数据分析与精准医疗中的应用进展
知识产权13937636601
计算机java分布式计算基因编辑
随着基因测序成本断崖式下降(单人类全基因组低于100)和CRISPR基因编辑技术成熟,全球日均产生超20PB基因数据。传统单机生物信息学工具难以应对海量多组学数据的整合、分析与临床转化。本文将系统阐述**Java技术栈如何构建新一代基因大数据计算中枢**:基于Hadoop+Spark的分布式架构实现千倍加速的基因组比对;通过Flink流式计算引擎支撑CRISPR脱靶效应实时预测;利用ApacheA
- 向量数据库简介
Morpheon
数据库
向量数据库是一种存储和管理向量数据的数据库。向量数据是表示为向量的数据,例如空间中的点或时间序列中的向量。向量数据库在各种应用中使用,如图像和视频搜索、自然语言处理和推荐系统。在机器学习中,我们通常使用向量数据库来存储来自BERT或OpenAI等模型的嵌入文本数据;图像数据(来自CNN或CLIP的嵌入)以及音频/视频/基因组数据。与SQL的WHERE子句等传统精确匹配查询不同,向量数据库支持相似性
- 2篇7章6节:弹性网(Elastic Net)回归的原理和应用场景,并用R进行代码演示
R科学与人工智能
用R探索医药数据科学回归r语言数据挖掘Lasso回归人工智能变量选择机器学习
在统计建模和机器学习中,回归分析是一项基础而重要的技术。我们经常使用线性回归模型来探索变量之间的关系、预测未知数据。然而,传统线性回归在处理多重共线性(也称为变量高度相关)或高维数据时,往往会遇到严重的性能问题,比如模型过拟合、解释力下降等。为了解决这些问题,学者们提出了多种“正则化”(regularization)方法,其中最知名的有两种:Lasso回归和岭回归。本文将介绍它们的“融合升级版”—
- PostgreSQL 在生物信息学中的应用
belldeep
PostgreSQL生物信息学postgresql数据库生物信息学
PostgreSQL(简称PG)是一种强大的开源关系型数据库管理系统,因其高可靠性、扩展性和支持复杂查询的特性,在生物信息学领域得到广泛应用。以下是其核心应用场景及优势分析:一、生物数据存储与管理生物信息学涉及海量异构数据,PG的结构化存储能力和可扩展性使其成为理想选择。1.多类型数据存储基因组数据:存储DNA/RNA序列、基因注释(如GTF/GFF文件)、变异数据(VCF格式)等。例:将基因组序
- python学习打卡day21
vijaycc
python学习打卡python学习开发语言
什么时候需要用到降维?1.数据可视化高维数据难以直接可视化(如超过3维),通过降维(如PCA、t-SNE、UMAP)投影到2D/3D空间,揭示数据分布、聚类或流形结构。适用算法:t-SNE(非线性可视化)、PCA(线性全局结构)、UMAP(高效非线性)。2.特征冗余与噪声去除数据中存在高度相关或冗余特征(如多重共线性),降维可提取独立成分,去除噪声。适用算法:PCA(最大化方差去噪)、ICA(独立
- 靶向捕获探针设计软件包
bug菌¹
全栈Bug调优(实战版)#CSDN问答解惑(全栈版)软件工程靶向捕获探针
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述 问题:目前正在自学靶向捕获测序中的探针设计需要探针设计的软件包,目前我查到的资料设计流程包括:1.根据基因组文件构建索引。2.输入目标区域的bed文件;3.
- 机器学习在代谢组学、蛋白质组学、微生物组学、基因组学研究中的应用
MR_WCJ
人工智能机器学习数据挖掘
如果您在从事生物医学方面的研究并且有发顶刊的想法下面这篇内容会给你思路和方法四大专题内容专题一:机器学习在蛋白质组学实践应用专题线上培训专题二:机器学习在代谢组学实践应用专题线上培训专题三:深度学习在基因组学实践应用专题线上培训专题四:机器学习在微生物组学时间应用专题线上培训自然微生物综述(IF:31.851)于2018年在线发表了微生物组领域的研究方法综述,不仅系统总结了过去,更为未来3-5年内
- 第21天打卡
不爱吃山楂罐头
python打卡机器学习人工智能
何时使用降维?1.数据可视化高维数据难以直接可视化(如超过3维),通过降维(如PCA、t-SNE、UMAP)投影到2D/3D空间,揭示数据分布、聚类或流形结构。适用算法:t-SNE(非线性可视化)、PCA(线性全局结构)、UMAP(高效非线性)。2.特征冗余与噪声去除数据中存在高度相关或冗余特征(如多重共线性),降维可提取独立成分,去除噪声。适用算法:PCA(最大化方差去噪)、ICA(独立成分分析
- 【AI模型学习】ESM2
千233
深度学习人工智能学习python
文章目录1.版本2.开始2.1安装2.2使用预训练模型2.2.1代码2.2.2讲解2.2结构预测3.任务类型总结1.蛋白质结构预测(ESMfold)2.特征嵌入提取(esm-extract)3.零镜头变体预测(ESM-1v/ESM-2)4.逆向折叠(ESM-IF1)5.宏基因组图谱数据(ESMAtlas)6.多序列比对分析(ESM-MSA-1b)7.生成式蛋白质设计(ESM-2)1.版本ESM-2
- Nature | 基因密码中的远古回响:东南亚人群基因组揭示人类演化新篇章
阔跃生物
阔跃生物阔跃云阔跃AI
东南亚大陆(MainlandSoutheastAsia,MSEA)以其丰富的民族和文化多样性著称,拥有近3亿人口。然而,当前的人类基因组数据库中,MSEA人群的代表性严重不足。近日,中国科学院昆明动物研究所联合东南亚多国科研机构在东南亚人群基因组研究领域取得里程碑式突破。其研究GenomediversityandsignaturesofnaturalselectioninmainlandSouth
- 三维基因组:diffHic 差异分析
后端
diffHicdiffHic是一款R包,几乎包含了Hi-C数据分析的全部流程。它从对原始数据(.fastq格式)进行比对开始,接着进行过滤、分箱、标准化,然后运用HiCCUPS方法来识别loop,利用directionalityindex来识别拓扑关联域(TADs),并且基于edgeR的统计框架开展差异分析。diffHic的比对过程是通过一个Python脚本实现的,该脚本需要借助Bowtie2,并
- David Baker 团队最新研究,利用蛋白质序列生成模型实现重叠基因设计,成功率极高
hyperai
1977年,英国生物化学家弗雷德里克·桑格(FrederickSanger)在解析ΦX174噬菌体基因组时,首次发现了一个颠覆认知的现象:这个仅5.4kb的DNA分子编码的蛋白质总长度,远超其物理容量限制。测序结果揭示,两对基因通过不同阅读框架共享同一DNA区域——这种被称为重叠基因(OLG)的现象,在病毒世界中极为普遍。例如,乙型肝炎病毒3.2kb基因组中,50%区域被多对重叠基因覆盖,超过半数
- TCGA 数据分析实战 —— 突变及拷贝数分析
名本无名
生信数据库R数据分析实战数据分析网络数据挖掘
TCGA数据分析实战——突变及拷贝数分析文章目录TCGA数据分析实战——突变及拷贝数分析前言基因组分析数据预处理识别recurrentCNVrecurrentCNV基因注释基因组变异可视化OncoPrintcircosplot部分区域可视化前言在介绍完TCGAbiolinks的查询下载和数据分析功能之后,我们简单展示几个示例,来练练手,加深对这个包的理解和使用我们主要从基因组、转录组和表观组3个维
- 讲解人工智能在现代科技中的应用和未来发展趋势
qq_33421488
人工智能
人工智能在现代科技中的应用非常广泛,包括但不限于以下领域:机器学习:人工智能的一个重要分支,通过训练模型使计算机系统能够从数据中学习并改进性能,应用于图像识别、语音识别、自然语言处理等方面。自动驾驶技术:利用人工智能技术和传感器来实现无人驾驶汽车,提高交通安全性和效率。医疗诊断:人工智能技术可以帮助医生进行影像诊断和基因组学分析,提高疾病诊断的准确性和效率。人工智能助手:如智能音箱、智能助手等,可
- TWAS——Transcriptome-wide Association Study
m1chiru
twas
TWAS(Transcriptome-wideAssociationStudy)是一种用于研究基因表达和疾病之间关系的方法。它通过对全基因组的基因表达数据进行统计分析,以识别与特定疾病或表型相关的基因表达变异。这种方法可以帮助科学家们理解疾病的遗传基础,并发现潜在的治疗靶点。而FUSION是一种用于检测基因融合的方法,它可以检测基因序列之间的重叠或融合事件。FUSION方法通常用于癌症研究,因为它
- 比对质量得分(MAPQ)的意义,为什么需要过滤低质量的比对reads,以及如何使用工具(如SAMtools)进行这类操作
请你喝好果汁641
linux
###1.**比对质量得分(MAPQ)的意义****MAPQ**(MappingQualityScore)是指在测序数据比对到参考基因组时,每个read的比对质量得分。MAPQ分数通常是由比对软件(如BWA、Bowtie2等)生成的,用来衡量该read比对到参考基因组的可靠性和唯一性。-**得分范围**:MAPQ得分通常是一个整数值,范围从0到60左右,具体范围和计算方式可能因使用的比对工具而异。
- 平面坐标系中判断点P是否在线段上AB上的常用方法总结
yuanpan
平面python开发语言点线关系
在平面坐标系中,判断点P是否在线段AB上,可以通过以下5种常用算法实现,涵盖数学原理、实现步骤和代码示例:1.参数化方程法(推荐)原理将点P表示为线段AB的线性插值,检查参数t是否在[0,1]范围内且满足共线性。步骤共线性检验:计算向量AP和AB的叉积(二维叉积为标量):Cross=(xP−xA)(yB−yA)−(yP−yA)(xB−xA)若∣Cross∣>ϵ(微小阈值,如10−6),则点不共线。
- AI服务器通常会运用在哪些场景当中?
wanhengidc
人工智能服务器运维
人工智能行业作为现代科技的杰出代表,在多个领域当中发展其强大的应用能力和价值,随之,AI服务器也在各个行业中日益显现出来,为各个行业提供了强大的计算能力和处理能力,帮助企业处理复杂的大规模数据,本文将来探索一下AI服务器通常都会运用在哪些场景当中吧!AI服务器可以运用在医疗教育当中,用于医学图像分析和基因组学研究等场景中,能够帮助其加速医学研究的速度,并且可以提高医学诊断的准确性,对国家医学领域发
- 人工智能与生命科学的深度融合:破解生物医学难题,引领未来科技革命
跨界科技汇
跨界科技人工智能科技
引言随着人工智能技术的飞速发展,生命科学领域迎来了前所未有的变革。从药物研发到疾病预测,从个性化医疗到基因组学,AI的深度融入不仅加速了生物医学的进步,还在多个领域打破了传统科学研究的局限,开创了新的医学前沿。作为跨学科创新的重要领域,人工智能与生命科学的深度融合正在重新定义未来医疗、健康和生物科技的未来。在这篇文章中,我们将探讨人工智能如何深度融合生命科学,解决当前生物医学面临的挑战,并探讨这种
- 【单倍型理解及计算系列之二】单倍型基本概念以及其与遗传定位中Bin的定义区别
梦仔生信进阶
分析流程的学习数据分析
问题:如何理解单倍型,与遗传定位中Bin的定义区别:简而言之:就是单倍型是基于LD,通常为连锁不平衡(LD)较高的区域形成。但bin是人为划分的,如以固定SNP数量/固定长度设置,将基因组分成连续的区间,用于简化分析等。如果依赖LD结构,这时候与单倍型有交集。Deepseek:在遗传学分析中,单倍型(Haplotype)和Bin(遗传定位中的区间)是两个不同的概念,尽管它们都用于简化基因组信息的复
- Newcpgreport:CpG岛甲基化差异分析
简说基因-专业生信合作伙伴
在人类基因组中,约60%的基因启动子区域都蕴藏着特殊的DNA序列——CpG岛。CpG岛(富含CpG二核苷酸的区域)被称为基因调控的“开关”,它们常位于基因启动子区域,与DNA甲基化、基因沉默等表观遗传现象密切相关。要精准定位这些区域,生物信息学家们开发了多种工具,其中newcpgreport凭借其独特的算法设计和可靠的检测性能,成为该领域的明星工具。功能特点核心功能与原理1.滑动窗口检测法newc
- AIGC赋能智慧医疗:从影像诊断到个性化治疗的革命性突破
VI8664956I26
AIGC
一、医疗AIGC技术架构1.1医疗场景技术挑战医疗环节行业痛点AIGC解决方案影像诊断人工阅片效率低多模态病灶分割与分级系统病历管理结构化程度低语音转文本+智能编码药物研发周期长成本高分子生成与虚拟筛选个性化治疗方案标准化不足基因组学+临床数据融合模型1.2医疗合规架构设计[医疗数据]→[隐私计算]→[多模态模型]→[临床决策]↑↓↑[区块链存证]←[解释性报告]←[医生工作站]二、核心模块开发2
- 生物医学工程导论:学习笔记(四)
Zodornus
生物医学工程学习笔记
生物信息学(Bioinformatics)狭义概念:应用信息科学的理论、方法和技术,来管理、分析和利用生物分子数据。广义概念:应用信息科学的方法和技术,研究生物体系和生物过程中信息的存储、信息的内涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息。(生命科学中的信息科学)目的:处理、归纳、总结海量的生物实验数据,并找到其中的规律。成果:基因测序等。研究内容基因组
- 个性化禁忌预警系统的构建与实现路径(2025版)
百态老人
前端服务器数据库
一、技术框架与核心逻辑个性化禁忌预警系统通过整合基因组数据、代谢组学和药物相互作用模型,构建动态风险评估体系。以"甘草-甘遂"配伍为例,其技术实现路径如下:
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的