Promise的诞生与Javascript中异步编程息息相关,js中异步编程主要指的是setTimout/setInterval、DOM事件机制、ajax,通过传入回调函数实现控制反转。异步编程为js带来强大灵活性的同时,也带来了嵌套回调的问题。详细来说主要有两点,第一嵌套太深代码可读性太差,第二并行逻辑必须串行执行。
request = function(url, cb, eb) { var xhr = new XMLHttpRequest(); xhr.onreadystatechange = function() { if (xhr.readyState === 4) { if ((xhr.status >=200 && xhr.status < 300) || xhr.status === 304) { cb(xhr.responseText); } else { eb(new Error({ message: xhr.status })); } } }; xhr.open('get', url, true); xhr.send(null); }
这个例子中程序要依次处理data1、data2、data3,嵌套太多可读性太差
request = function(url) { var def = new Deferred(); var xhr = new XMLHttpRequest(); xhr.onreadystatechange = function() { if (xhr.readyState === 4) { if ((xhr.status >=200 && xhr.status < 300) || xhr.status === 304) { def.resolve(xhr.responseText) } else {//简化ajax,没有提供错误回调 def.reject(new Error({ message: xhr.status })); } } }; xhr.open('get', url, true); xhr.send(null); return def.promise; } request('data1.json').then(function(data1) { console.log(data1);//处理data1 return request('data2.json'); }).then(function(data2) { console.log(data2);//处理data2 return request('data3.json'); }, function(err) { console.error(err); }).then(function(data3) { console.log(data3); alert('success'); }, function(err) { console.error(err); });
这个例子中程序需要请求data1、data2、data3数据,得到三个数据后才进行下一步处理。数据并不需要串行请求,但我们的代码却需要串行执行,增加了等待时间。
//并行逻辑串行执行 request('data1', function(data1) { request('data2', function(data2) { request('data3', function(data3) { console.log(data1, data2, data3);//处理全部数据 alert('success'); }, function(err) { console.error(err); }); }, function(err) { console.error(err); }); }, function(err) { console.error(err); });
Promise机制
Promise机制便是上述问题的一种解决方案。与他相关的规范有PromiseA和PromiseA+,PromiseA中对Promise进行了整体描述,PromiseA+对A进行了补充,在then函数的行为方面进行了更加详尽的阐述。
then
method, which registers callbacks to receive either a promise’s eventual value or the reason why the promise cannot be fulfilled.跟promise交互的主要方式是通过他的then方法来注册回调函数去接收promise的最终结果值或者是promise不能完成的原因。
我们可以简单总结一下规范。每个promise都有三个状态:pending(默认)、fulfilled(完成)、rejected(失败);默认状态可以转变为完成态或失败态,完成态与失败态之间无法相互转换,转变的过程是不可逆的,转变一旦完成promise对象就不能被修改。通过promise提供的then函数注册onFulfill(成功回调)、onReject(失败回调)、onProgres(进度回调)来与promise交互。Then函数返回一个promise对象(称为promise2,前者成为promise1),promise2受promise1状态的影响,具体请查看A+规范。
上两个规范中并没有说明promise的状态如何改变,大部分前端框架中使用Deferred来改变promise的状态(resolve()、reject())。二者关系请看下图。
这里根据规范,我们实现一下promise
Promise = function() { this.queue = []; this.value = null; this.status = 'pending';// pending fulfilled rejected }; Promise.prototype.getQueue = function() { return this.queue; }; Promise.prototype.getStatus = function() { return this.status; }; Promise.prototype.setStatus = function(s, value) { if (s === 'fulfilled' || s === 'rejected') { this.status = s; this.value = value || null; this.queue = []; var freezeObject = Object.freeze || function(){}; freezeObject(this);// promise的状态是不可逆的 } else { throw new Error({ message: "doesn't support status: " + s }); } }; Promise.prototype.isFulfilled = function() { return this.status === 'fulfilled'; }; Promise.prototype.isRejected = function() { return this.status === 'rejected'; } Promise.prototype.isPending = function() { return this.status === 'pending'; } Promise.prototype.then = function(onFulfilled, onRejected) { var handler = { 'fulfilled': onFulfilled, 'rejected': onRejected }; handler.deferred = new Deferred(); if (!this.isPending()) {//这里允许先改变promise状态后添加回调 utils.procedure(this.status, handler, this.value); } else { this.queue.push(handler);//then may be called multiple times on the same promise;规范2.2.6 } return handler.deferred.promise;//then must return a promise;规范2.2.7 }; var utils = (function(){ var makeSignaler = function(deferred, type) { return function(result) { transition(deferred, type, result); } }; var procedure = function(type, handler, result) { var func = handler[type]; var def = handler.deferred; if (func) { try { var newResult = func(result); if (newResult && typeof newResult.then === 'function') {//thenable // 此种写法存在闭包容易造成内存泄露,我们通过高阶函数解决 // newResult.then(function(data) { // def.resolve(data); // }, function(err) { // def.reject(err); // }); //PromiseA+规范,x代表newResult,promise代表def.promise //If x is a promise, adopt its state [3.4]: //If x is pending, promise must remain pending until x is fulfilled or rejected. //If/when x is fulfilled, fulfill promise with the same value. //If/when x is rejected, reject promise with the same reason. newResult.then(makeSignaler(def, 'fulfilled'), makeSignaler(def, 'rejected'));//此处的本质是利用了异步闭包 } else { transition(def, type, newResult); } } catch(err) { transition(def, 'rejected', err); } } else { transition(def, type, result); } }; var transition = function(deferred, type, result) { if (type === 'fulfilled') { deferred.resolve(result); } else if (type === 'rejected') { deferred.reject(result); } else if (type !== 'pending') { throw new Error({ 'message': "doesn't support type: " + type }); } }; return { 'procedure': procedure } })(); Deferred = function() { this.promise = new Promise(); }; Deferred.prototype.resolve = function(result) { if (!this.promise.isPending()) { return; } var queue = this.promise.getQueue(); for (var i = 0, len = queue.length; i < len; i++) { utils.procedure('fulfilled', queue[i], result); } this.promise.setStatus('fulfilled', result); }; Deferred.prototype.reject = function(err) { if (!this.promise.isPending()) { return; } var queue = this.promise.getQueue(); for (var i = 0, len = queue.length; i < len; i++) { utils.procedure('rejected', queue[i], err); } this.promise.setStatus('rejected', err); }
通过Promise机制我们的编程方式可以变成这样:
request = function(url) { var def = new Deferred(); var xhr = new XMLHttpRequest(); xhr.onreadystatechange = function() { if (xhr.readyState === 4) { if ((xhr.status >=200 && xhr.status < 300) || xhr.status === 304) { def.resolve(xhr.responseText) } else {//简化ajax,没有提供错误回调 def.reject(new Error({ message: xhr.status })); } } }; xhr.open('get', url, true); xhr.send(null); return def.promise; } request('data1.json').then(function(data1) { console.log(data1);//处理data1 return request('data2.json'); }).then(function(data2) { console.log(data2);//处理data2 return request('data3.json'); }, function(err) { console.error(err); }).then(function(data3) { console.log(data3); alert('success'); }, function(err) { console.error(err); });
对于并行逻辑串行执行问题我们可以这样解决
//所有异步操作都完成时,进入完成态, //其中一项异步操作失败则进入失败态 all = function(requestArray) { // var some = Array.prototype.some; var def = new Deferred(); var results = []; var total = 0; requestArray.some(function(r, idx) { //为数组中每一项注册回调函数 r.then(function(data) { if (def.promise.isPending()) { total++; results[idx] = data; if (total === requestArray.length) { def.resolve(results); } } }, function(err) { def.reject(err); }); //如果不是等待状态则停止,比如requestArray[0]失败的话,剩下数组则不用继续注册 return !def.promise.isPending(); }); return def.promise; } all( [request('data1.json'), request('data2.json'), request('data3.json')] ).then( function(results){ console.log(results);// 处理data1,data2,data3 alert('success'); }, function(err) { console.error(err); });
以下是几个测试案例
//链式调用 var p1 = new Deferred(); p1.promise.then(function(result) { console.log('resolve: ', result); return result; }, function(err) { console.log('reject: ', err); return err; }).then(function(result) { console.log('resolve2: ', result); return result; }, function(err) { console.log('reject2: ', err); return err; }).then(function(result) { console.log('resolve3: ', result); return result; }, function(err) { console.log('reject3: ', err); return err; }); p1.resolve('success'); //p1.reject('failed'); p1.promise.then(function(result) { console.log('after resolve: ', result); return result; }, function(err) { console.log('after reject: ', err); return err; }).then(function(result) { console.log('after resolve2: ', result); return result; }, function(err) { console.log('after reject2: ', err); return err; }).then(function(result) { console.log('after resolve2: ', result); return result; }, function(err) { console.log('after reject2: ', err); return err; }); //串行异步 var p2 = new Deferred(); p2.promise.then(function(result) { var def = new Deferred(); setTimeout(function(){ console.log('resolve: ', result); def.resolve(result); }) return def.promise; }, function(err) { console.log('reject: ', err); return err; }).then(function(result) { var def = new Deferred(); setTimeout(function(){ console.log('resolve2: ', result); def.reject(result); }) return def.promise; }, function(err) { console.log('reject2: ', err); return err; }).then(function(result) { console.log('resolve3: ', result); return result; }, function(err) { console.log('reject3: ', err); return err; }); p2.resolve('success'); //并行异步 var p1 = function(){ var def = new Deferred(); setTimeout(function() { console.log('p1 success'); def.resolve('p1 success'); }, 20); return def.promise; } var p2 = function(){ var def = new Deferred(); setTimeout(function() { console.log('p2 failed'); def.reject('p2 failed'); }, 10); return def.promise; } var p3 = function(){ var def = new Deferred(); setTimeout(function() { console.log('p3 success'); def.resolve('p3 success'); }, 15); return def.promise; } all([p1(), p2(), p3()]).then(function(results) { console.log(results); }, function(err) { console.error(err); });
Promise优点
对比使用Promise前后我们可以发现,传统异步编程通过嵌套回调函数的方式,等待异步操作结束后再执行下一步操作。过多的嵌套导致意大利面条式的代码,可读性差、耦合度高、扩展性低。通过Promise机制,扁平化的代码机构,大大提高了代码可读性;用同步编程的方式来编写异步代码,保存线性的代码逻辑,极大的降低了代码耦合性而提高了程序的可扩展性。
参考文章: