数据结构——判断是否有环

转载原地址:http://blog.csdn.net/doufei_ccst/article/details/10578315

判断链表中是否有环 ----- 有关单链表中环的问题

给定一个单链表,判断其中是否有环,已经是一个比较老同时也是比较经典的问题,在网上搜集了一些资料,

然后总结一下大概可以涉及到的问题,以及相应的解法。

 

首先,关于单链表中的环,一般涉及到一下问题:

1.给一个单链表,判断其中是否有环的存在;

2.如果存在环,找出环的入口点;

3.如果存在环,求出环上节点的个数;

4.如果存在环,求出链表的长度;

5.如果存在环,求出环上距离任意一个节点最远的点(对面节点);

6.(扩展)如何判断两个无环链表是否相交;

7.(扩展)如果相交,求出第一个相交的节点;

 

下面,我将针对上面这七个问题一一给出解释和相应的代码。

1.判断时候有环(链表头指针为head)

对于这个问题我们可以采用“快慢指针”的方法。就是有两个指针fast和slow,开始的时候两个指针都指向链表头head,然后在每一步

操作中slow向前走一步即:slow = slow->next,而fast每一步向前两步即:fast = fast->next->next。

由于fast要比slow移动的快,如果有环,fast一定会先进入环,而slow后进入环。当两个指针都进入环之后,经过一定步的操作之后

二者一定能够在环上相遇,并且此时slow还没有绕环一圈,也就是说一定是在slow走完第一圈之前相遇。证明可以看下图:

当slow刚进入环时每个指针可能处于上面的情况,接下来slow和fast分别向前走即:

 

if (slow != NULL && fast->next != NULL)  
{  
         slow = slow -> next ;  
         fast = fast -> next -> next ;  
}  

也就是说,slow每次向前走一步,fast向前追了两步,因此每一步操作后fast到slow的距离缩短了1步,这样继续下去就会使得

 

两者之间的距离逐渐缩小:...、5、4、3、2、1、0 -> 相遇。又因为在同一个环中fast和slow之间的距离不会大于换的长度,因此

到二者相遇的时候slow一定还没有走完一周(或者正好走完以后,这种情况出现在开始的时候fast和slow都在环的入口处)。

 

下面给出问题1的完整代码:

typedef struct node{  
    char data ;  
    node * next ;  
}Node;  
bool exitLoop(Node *head)  
{  
    Node *fast, *slow ;  
    slow = fast = head ;  
  
    while (slow != NULL && fast -> next != NULL)  
    {  
        slow = slow -> next ;  
        fast = fast -> next -> next ;  
        if (slow == fast)  
            return true ;  
    }  
    return false ;  
}  


下面看问题2,找出环的入口点:

 

 

我结合着下图讲解一下:

 

 

从上面的分析知道,当fast和slow相遇时,slow还没有走完链表,假设fast已经在环内循环了n(1<= n)圈。假设slow走了s步,则fast走了2s步,又由于

fast走过的步数 = s + n*r(s + 在环上多走的n圈),则有下面的等式:

2*s = s + n  * r ; (1)

 => s = n*r (2)

如果假设整个链表的长度是L,入口和相遇点的距离是x(如上图所示),起点到入口点的距离是a(如上图所示),则有:

a + x = s = n * r; (3)  由(2)推出

a + x = (n - 1) * r + r  = (n - 1) * r + (L - a) (4) 由环的长度 = 链表总长度 - 起点到入口点的距离求出

a = (n - 1) * r + (L -a -x) (5)

 

集合式子(5)以及上图我们可以看出,从链表起点head开始到入口点的距离a,与从slow和fast的相遇点(如图)到入口点的距离相等。

因此我们就可以分别用一个指针(ptr1, prt2),同时从head与slow和fast的相遇点出发,每一次操作走一步,直到ptr1 == ptr2,此时的位置也就是入口点!

到此第二个问题也已经解决。

下面给出示意性的简单代码(没有测试但是应该没有问题):

Node* findLoopStart(Node *head)  
{  
    Node *fast, *slow ;  
    slow = fast = head ;  
  
    while (slow != NULL && fast -> next != NULL)  
    {  
        slow = slow -> next ;  
        fast = fast -> next -> next ;  
        if (slow == fast) break ;  
    }  
    if (slow == NULL || fast -> next == NULL) return NULL ; //没有环,返回NULL值  
  
    Node * ptr1 = head ; //链表开始点  
    Node * ptr2 = slow ; //相遇点  
    while (ptr1 != ptr2)   
    {  
        ptr1 = ptr1 -> next ;  
        ptr2 = ptr2 -> next ;  
    }  
    return ptr1 ; //找到入口点  
}  

第3个问题,如果存在环,求环上节点的个数:

对于这个问题,我这里有两个思路(肯定还有其它跟好的办法):

思路1:记录下相遇节点存入临时变量tempPtr,然后让slow(或者fast,都一样)继续向前走slow = slow -> next;一直到slow == tempPtr; 此时经过的步数就是环上节点的个数;

思路2: 从相遇点开始slow和fast继续按照原来的方式向前走slow = slow -> next; fast = fast -> next -> next;直到二者再次项目,此时经过的步数就是环上节点的个数 。

 

第一种思路很简单,其实就是一次遍历链表的环,从而统计出点的个数,没有什么可以详细解释的了。

对于第二种思路,我们可以这样想,结合上面的分析,fast和slow没一次操作都会使得两者之间的距离较少1。我们可以把两者相遇的时候看做两者之间的距离正好是整个环的

长度r。因此,当再次相遇的时候所经过的步数正好是环上节点的数目。

由于这两种思路都比较简单,代码也很容易实现,这里就不给出了。

 

问题4是如果存在环,求出链表的长度:

到这里,问题已经简单的多了,因为我们在问题1、2、3中已经做得足够的”准备工作“。

我们可以这样求出整个链表的长度:

 

链表长度L = 起点到入口点的距离 + 环的长度r;

 

已经知道了起点和入口点的位置,那么两者之间的距离很好求了吧!环的长度也已经知道了,因此该问题也就迎刃而解了!

 

问题5是,求出环上距离任意一个节点最远的点(对面节点)

 

如下图所示,点1和4、点2和5、点3和6分别互为”对面节点“ ,也就是换上最远的点,我们的要求是怎么求出换上任意一个点的最远点。

 

对于换上任意的一个点ptr0, 我们要找到它的”对面点“,可以这样思考:同样使用上面的快慢指针的方法,让slow和fast都指向ptr0,每一步都执行与上面相同的操作(slow每次跳一步,fast每次跳两步),

当fast = ptr0或者fast = prt0->next的时候slow所指向的节点就是ptr0的”对面节点“。

为什么是这样呢?我们可以这样分析:

 

如上图,我们想像一下,把环从ptro处展开,展开后可以是无限长的(如上在6后重复前面的内容)如上图。

现在问题就简单了,由于slow移动的距离永远是fast的一般,因此当fast遍历玩整个环长度r个节点的时候slow正好遍历了r/2个节点,

也就是说,此时正好指向距离ptr0最远的点。

 

对于问题6(扩展)如何判断两个无环链表是否相交,和7(扩展)如果相交,求出第一个相交的节点,其实就是做一个问题的转化:

 

假设有连个链表listA和listB,如果两个链表都无环,并且有交点,那么我们可以让其中一个链表(不妨设是listA)的为节点连接到其头部,这样在listB中就一定会出现一个环。

因此我们将问题6和7分别转化成了问题1和2.

看看下图就会明白了:

 

参考:

http://www.cppblog.com/humanchao/archive/2012/11/12/47357.html

http://blog.csdn.net/liuxialong/article/details/6555850

http://blog.csdn.net/liuxialong/article/details/6555850

 

 

你可能感兴趣的:(数据结构,数据结构)