- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- YOLOv11 | SAConv与C3k2融合架构技术详解,替换传统下采样Conv
wei子
技术杂谈YOLO人工智能
YOLOv11|SAConv与C3k2融合架构技术详解,替换传统下采样Conv1.核心创新与技术价值1.1突破性设计理念本文提出的SAConv(SwitchableAtrousConvolution)可切换空洞卷积结合C3k2二次创新模块,在YOLOv11中实现了三大突破:动态感受野调节:支持[1,2,3]三种空洞率的实时切换多尺度特征融合:跨层级特征的无损传递计算效率优化:相比传统空洞卷积节省3
- RT-DETR改进|爆改模型|涨点|使用VMamba作为骨干网络(附代码+修改教程)
爆改模型
网络深度学习人工智能计算机视觉
一、文本介绍本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(VisualStateSpaceModel)替换ResNet作为RT-DETR的骨干网络。VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实现线性复杂度。为了解决方向敏感性问题,VMamba引入
- 52-【JavaScript-Day 52】告别“野路子”代码:ESLint、Prettier与Web安全入门
吴师兄大模型
javascript开发语言ecmascriptjava人工智能大模型ESLint
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- 非结构化数据真“野”?聊聊AI处理它时踩过的那些坑
Echo_Wish
Python进阶人工智能
非结构化数据真“野”?聊聊AI处理它时踩过的那些坑在AI圈子里有一句“老话”:真正的世界,是非结构化的。图像、音频、视频、文本、传感器原始数据……这些在数据库里没个字段、没个主键的家伙,占据了全世界80%以上的数据量。咱们都喜欢说“数据是新时代的石油”,但很少人说:非结构化数据,就是粘稠未提炼的原油——处理它,才是最累的活。这篇文章,我不想跟你讲那些“炫技”的论文和模型,而是从一个一线AI工程师的
- 【Pytorch学习笔记】模型模块09——VGG详解
越轨
Pytorch学习笔记pytorch学习笔记深度学习人工智能python
一、VGG核心设计原理小卷积核堆叠用多层3×3卷积替代大卷积核(如5×5/7×7)数学原理:2层3×3卷积感受野等效于5×5:RFout=(RFin−1)×stride+KRF_{out}=(RF_{in}-1)\timesstride+KRFout=(RFin−1)×stride+K参数量对比:3层3×3卷积(3×(32C2)=27C23×(3^2C^2)=27C^23×(32C2)=27C2)
- 第6章:学徒毕业考试:模型评估的四把尺
白嫖不白嫖
深度求索-DeepSeek人工智能机器学习
第6章:学徒毕业考试:模型评估的四把尺引言:从厨房毕业到AI模型评估想象一下,你是一位刚完成30天特训的厨房学徒。师傅给你安排了一场“毕业考试”:做一道招牌菜——番茄炒蛋,由10位挑剔的顾客盲测品鉴(顾客不知道谁做的菜)。他们会根据“是否好吃”给出打分:好吃(✅)或难吃(❌)。这场考试的目的,是验证你是否能真正掌握菜谱精髓,避免成为“死记硬背的书呆子”(过拟合)或“随意发挥的野路子”(欠拟合)。在
- Python训练营---DAY54
2501_91182850
Python训练营python开发语言深度学习
DAY54Inception网络及其思考知识点回顾:传统计算机视觉发展史:LeNet-->AlexNet-->VGGNet-->nceptionNet-->ResNetinception模块和网络特征融合方法阶段性总结:逐元素相加、逐元素相乘、concat通道数增加等感受野与卷积核变体:深入理解不同模块和类的设计初衷作业:一次稍微有点学术感觉的作业:对inception网络在cifar10上观察精
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- YOLOv12改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv12改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv12的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv12的改进过程中,针对目标
- Incremental Transformer Structure EnhancedImage Inpainting with Masking Positional Encoding笔记
毕设做完了吗?
transformer笔记深度学习
摘要:近年来,图像修复取得了重大进展。然而,恢复具有生动纹理和合理结构的损坏图像仍然具有挑战性。由于卷积神经网络(CNN)的感受野有限,一些特定方法只能处理常规纹理,同时失去整体结构。另一方面,基于注意力的模型可以更好地学习结构恢复的长程依赖性,但它们受到大图像尺寸推理的大量计算的限制。为了解决这些问题,我们建议利用一个额外的结构恢复器来促进图像的增量修复。所提出的模型在固定的低分辨率草图空间中,
- 深度学习进阶:卷积神经网络(CNN)原理与实战
软考和人工智能学堂
#深度学习人工智能#DeepSeek快速入门深度学习cnn人工智能
1.卷积神经网络概述卷积神经网络(ConvolutionalNeuralNetworks,CNN)是深度学习中专门用于处理网格状数据(如图像、语音、视频)的神经网络架构。与传统全连接网络相比,CNN具有三大核心思想:局部感受野:每个神经元只与输入数据的局部区域连接权值共享:同一特征检测器在不同位置使用相同的参数空间下采样:通过池化操作逐步降低数据维度这些特性使CNN能够高效处理高维数据,并保持对平
- Python datetime库【日期和时间处理库】全面讲解与示例
老胖闲聊
Python库大全python网络开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- CNN中的感受野
AI扶我青云志
cnn人工智能
今天在牛客刷机器学习的时候,看到了感受野的概念,学习过程中可能没有注意到,现在补一下这个概念及作用。感受野(ReceptiveField)是卷积神经网络(CNN)中的核心概念,指网络中某一层特征图上的单个神经元在输入图像上所能“看到”或影响的区域范围。它决定了神经元处理信息的空间尺度,直接影响网络对局部细节和全局语义的捕捉能力。以下是其详细解析:一、定义与核心概念基本定义感受野是特征图上单个像素点
- YoloV8改进策略:Block改进|MKP,多尺度卷积核级联结构,增强感受野适应性|即插即用|AAAI 2025
AI智韵
YOLO目标跟踪人工智能
文章目录1论文信息2创新点2.1特征互补映射模块(FCM)2.2多内核感知单元(MKP)2.3冗余驱动的轻量化设计3方法3.1整体架构3.2MKP单元优化3.3MKP设计优势4效果4.1性能对比实验4.2消融实验4.3效率优势5论文总结代码完整代码Pzconv模块代码详解辅助函数和基础模块Pzconv模块核心实现测试代码关键设计解析1.多尺度特征提取2.深度可分离卷积3.特征变换与非线性激活4.残
- 【Block总结】MKP,多尺度卷积核级联结构,增强感受野适应性|AAAI 2025
AI浩
目标跟踪人工智能计算机视觉
1论文信息FBRT-YOLO(FasterandBetterforReal-TimeAerialImageDetection)是由北京理工大学团队提出的专用于航拍图像实时目标检测的创新框架,发表于AAAI2025。论文针对航拍场景中小目标检测的核心难题展开研究,重点解决小目标因分辨率低、背景干扰多导致的定位困难,以及现有方法在实时性与精度间的失衡问题。航拍图像目标检测是无人机、遥感监测等应用的关键
- 井川里予瓜pdf完整版
洋洋654
pdf
井川里予瓜pdf完整版下载链接:链接:https://pan.quark.cn/s/c75455d6be60在网红文化盛行的当下,井川里予无疑是一位备受瞩目的人物。这位2001年出生于广东湛江的姑娘,凭借独特风格在网络世界掀起波澜,其发展轨迹深刻映射出网红经济与大众文化的复杂交织。井川里予原名庞欣然,大学就读于浙江经济职业技术学院。2018年,她将名字“野”字拆分,加上“井川”,以独特网名进驻抖音
- 深度学习网络架构与应用:CNN、RNN、GAN三大核心模型解析
you的日常
人工智能大语言模型深度学习人工智能cnnrnngan神经网络生成对抗网络
深度学习领域三大核心神经网络架构——卷积神经网络(CNN)、循环神经网络(RNN)及生成对抗网络(GAN)各具特色,共同推动着人工智能技术的边界。CNN凭借其局部感受野和参数共享机制,在图像分类与目标检测领域展现出卓越性能;RNN通过循环结构有效处理序列数据,在文本生成等任务中发挥重要作用;GAN则利用生成器与判别器的对抗博弈,生成逼真数据。这三大架构在各自领域不断演进,形成了一系列经典模型与创新
- python实现将野燕麦优化算法与OpenCV结合
babyai997
python算法opencv
野燕麦优化算法:一种基于自然启发的元启发式优化方法引言野燕麦优化算法(WildOatOptimization,WOO)是一种新兴的元启发式优化算法,灵感来源于野燕麦种子在自然环境中的传播机制。近年来,随着优化算法在计算机视觉、机器学习等领域的广泛应用,基于自然现象的元启发式算法受到越来越多研究者的关注。本文将详细介绍野燕麦优化算法的基本原理、实现方法,并探讨如何将其与OpenCV在Python环境
- Python spaCy 库【NLP处理库】的基础知识讲解
老胖闲聊
Python库大全python自然语言处理开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python Arrow 库:优雅处理日期与时间的终极指南
老胖闲聊
Python库大全pythonjava服务器
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python wxPython 【GUI库】简介
老胖闲聊
Python库大全python开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python jieba库简介
老胖闲聊
Pythonpython开发语言
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- Python aiohttp 全面指南:异步HTTP客户端/服务器框架
老胖闲聊
Pythonpythonhttp服务器
边写代码零食不停口盼盼麦香鸡味块、卡乐比(Calbee)薯条三兄弟独立小包、好时kisses多口味巧克力糖、老金磨方【黑金系列】黑芝麻丸边写代码边贴面膜事业美丽两不误DR.YS野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合优惠劵别光顾写代码更要多喝茶水,提神有营养六安瓜片茶叶茶香二级200g2025年新茶雨前盒装自己喝让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——
- 从代数到几何:向量点乘与叉乘的定义、推导及几何意义
斐夷所非
mathematics向量点乘与叉乘
注:本文为“向量点乘与叉乘”相关文章合辑。图片清晰度受引文原图所限。略作重排,未整理去重。如有内容异常,请看原文。向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读-牧野-于2016-09-0220:50:34发布一、向量基础概念向量是由nnn个实数组成的一个nnn行1列(n×1n\times1n×1)或一个1行nnn列(1×n1\timesn1×n)的有序数组。二、向量点乘(内积、数量积)
- 【目标检测】backbone究竟有何关键作用?
猫天意
目标检测目标检测人工智能计算机视觉CV
backbone的核心在于能为检测提供若干种感受野大小和中心步长的组合,以满足对不同尺度和类别的目标检测。
- 【目标检测】检测网络中neck的核心作用
猫天意
目标检测人工智能计算机视觉CV基础
1.neck最主要的作用就是特征融合,融合就是将具有不同大小感受野的特征图进行了耦合,从而增强了特征图的表达能力。2.neck决定了head的数量,进而潜在决定了不同尺度样本如何分配到不同的head,这一点可以看做是将整个网络的多尺度目标学习的负担,分散到了多个层级的特征图上。3.neck将来自于backbone上的多个层级的特征图进行融合加工,增强其表达能力的同时,输出加工后并具有相同宽度的特征
- 一文读懂Vision Transformer图像分类原理与实现
t0_54program
生成对抗网络人工智能神经网络个人开发
在图像分类领域,卷积神经网络(CNNs)长期占据主导地位,因其具备平移不变性和局部受限感受野等归纳偏置。然而,Transformer的出现为图像分类带来了新的思路。本文将详细探讨Transformer架构在图像分类中的微调,即VisionTransformer(ViT)的工作原理、重要细节以及具体实现。ViT架构简述图像分块与嵌入首先,将图像分割成多个图像块(patches),这些图像块类似于文本
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分