LBP指局部二值模式(Local Binary Pattern),是一种用来描述图像局部特征的算子,具有灰度不变性和旋转不变性等显著优点。LBP常应用于人脸识别和目标检测中,在OpenCV中有使用LBP特征进行人脸识别的接口,也有用LBP特征训练目标检测分类器的方法,OpenCV实现了LBP特征的计算,但没有提供一个单独的计算LBP特征的接口。也就是说OpenCV中使用了LBP算法,但是没有提供函数接口。
了解人脸检测相关流程
理解LBP算法相关原理
掌握基于OpenCV的LBP算法实现
LBP特征用图像的局部领域的联合分布$T$ 来描述图像的纹理特征,如果假设局部邻域中像素个数为$P(P >1)$,那么纹理特征的联合分布$T$ 可以表述成:
$$T=t\left(g{c}, g{0}, \ldots, g_{p-1}\right) \quad p=0, \ldots, P-1\tag{2-1}$$
其中, $g_c$ 表示相应局部邻域的中心像素的灰度值, $g_p$ 表示以中心像素圆心,以R为半径的圆上的像素的灰度值。
假设中心像素和局部邻域像素相互独立,那么这里可以将上面定义式写成如下形式:
$$\begin{aligned} T &=t\left(g{c}, g{0}-g{c}, \ldots, g{p-1}-g{c}\right) \quad p=0, \ldots, P-1 \ & \approx t\left(g{c}\right) t\left(g{0}-g{c}, \ldots, g{p-1}-g{c}\right) \end{aligned}\tag{2-2}$$
其中$t(g_c)$决定了局部区域的整体亮度,对于纹理特征,可以忽略这一项,最终得到:
$$T \approx t\left(g{0}-g{c}, \ldots, g{p-1}-g{c}\right) \quad p=0, \ldots, P-1\tag{2-3}$$
上式说明,将纹理特征定义为邻域像素和中心像素的差的联合分布函数,因为$g_p − g_c$是基本不受亮度均值影响的,所以从上式可以看出,此时统计量T 是一个跟亮度均值,即灰度级无关的值。
最后定义特征函数如下: $$\begin{array}{l} T \approx t\left(s\left(g{0}-g{c}\right), \ldots, s\left(g{p-1}-g{c}\right)\right) p=0, \ldots, P-1 \ s(x)=\left{\begin{array}{l} 1, x \geq 0 \ 0, x<0 \end{array}\right. \end{array}\tag{2-4}$$
定义灰度级不变LBP为:
$$L B P{P, R}=\sum{p=0}^{P-1} s\left(g{p}-g{c}\right) 2^{p}\tag{2-5}$$
即二进制编码公式。
通俗解释:
原始的LBP算子定义在像素$33$的邻域内,以邻域中心像素为阈值,相邻的8个像素的灰度值与邻域中心的像素值进行比较,若周围像素大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,$33$邻域内的8个点经过比较可产生8为二进制数,将这8位二进制数依次排列形成一个二进制数字,这个二进制数字就是中心像素的LBP值,LBP值共有28种可能,因此LBP值有256种可能。中心像素的LBP值反映了该像素周围区域的纹理信息。
注意:计算LBP特征的图像必须是灰度图,如果是彩色图,需要先转换成灰度图
图 2.3.1 LBP计算示意图
基本的 LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度级和旋转不变性的要求,Ojala等对 LBP算子进行了改进,将 3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP算子允许在半径为 R的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子,表示为$LBP^{R}_P$;
图 2.3.2 圆形LBP示意图
对于给定中心点$(x_c,y_c)$,其邻域像素位置为$(x_p,y_p)$,$p∈P$,其采样点$(x_p,y_p)$用如下公式计算:
$$\begin{array}{l} x{p}=x{c}+\operatorname{Rcos}\left(\frac{2 \pi p}{P}\right) \ y{p}=y{c}+\operatorname{Rsin}\left(\frac{2 \pi p}{P}\right) \end{array}\tag{2-6}$$
R是采样半径,p是第p个采样点,P是采样数目。如果近邻点不在整数位置上,就需要进行插值运算,可以参考这篇博客 OpenCV框架下的插值算法
LPB特征是灰度不变,但不是旋转不变的,同一幅图像,进行旋转以后,其特征将会有很大的差别,影响匹配的精度。Ojala在LBP算法上,进行改进,实现了具有旋转不变性的LPB的特征。
实现方法:不断旋转圆形邻域得到一系列初始定义的LPB值,取最小值作为该邻域的值。
$$L B P{P R}^{ri}=\min \left(R O R\left(L B P{P, R}^{ri}, i\right) | i=0,1, \ldots, P-1\right)\tag{2-7}$$
其中$L B P_{P R}^{ri}$表示具有旋转不变性的LBP特征。$ROR(x, i)$为旋转函数,表示将$x$右循环$i$位。
图 2.3.3 求取旋转不变的LPB特征示意图
等价模式:
一个LBP算子可以产生不同的二进制模式,对于$LBP^{R}_p$将会产生$2^p$种模式。比如$7*7$邻域内有$2^{36}$种模式。如此多的二值模式对于信息的提取和识别都是不利的。
Ojala等认为,在实际图像中,绝大多数LPB模式最多只包含两次从1到0或从0到1的跳变。
等价模式:当某个局部二进制模式所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该局部二进制模式所对应的二进制就称为一个等价模式。
比如:00000000,11111111,11110010,10111111都是等价模式。
检查某种模式是否是等价模式: $$U\left(G{p}\right)=\left|s\left(g{p{-1}}-g{c}\right)-s\left(g{0}-g{c}\right)\right|+\sum{p=1}^{P{-1}}\left|s\left(g{p}-g{c}\right)-s\left(g{P-1}-g{c}\right)\right|\tag{2-8}$$
将其和其移动一位后的二进制模式按位相减。并绝对值求和。若U$\left(G_{p}\right)$ 小于等于2,则为等价模式。
混合模式:除了等价模式之外的称为混合模式。
改进后的LPB模式数由2 $^{p}$(p为邻域集内的采集点数 ) 降维为$p*(p-1)+2$ 。维数减少,可以降低高频噪声的影响。Ojala认为等价模式占总模式中的绝大数。图2.4 ( a ), ( b ), ( c )等价模式分别占88\%,93\%和76\%。
图 2.3.4
可以通过低通滤波的方法来增强等价模式所占的比例。图2.4( c )经过高斯滤波后,其等价模式所占比可以增加到90%。
人脸检测过程采用多尺度滑窗搜索方式,每个尺度通过一定步长截取大小为20x20的窗口,然后将窗口放到分类器中进行是不是人脸的判决,如果是人脸则该窗口通过所有分类器;反之,会在某一级分类器被排除。
图 2.3.5 人脸检测流程图
使用OpenCV的LBP于预训练模型
将haarcascade_frontalface_default.xml下载至本地以方便调用,下载链接:https://github.com/opencv/opencv/blob/master/data/lbpcascades/lbpcascade_frontalface_improved.xml
#coding:utf-8 import cv2 as cv # 读取原始图像 img= cv.imread('*.png') #face_detect = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') face_detect = cv.CascadeClassifier("lbpcascade_frontalface_improved.xml") # 检测人脸 # 灰度处理 gray = cv.cvtColor(img, code=cv.COLOR_BGR2GRAY) # 检查人脸 按照1.1倍放到 周围最小像素为5 face_zone = face_detect.detectMultiScale(gray, scaleFactor = 2, minNeighbors = 2) # maxSize = (55,55) print ('识别人脸的信息:\n',face_zone) # 绘制矩形和圆形检测人脸 for x, y, w, h in face_zone: # 绘制矩形人脸区域 cv.rectangle(img, pt1 = (x, y), pt2 = (x+w, y+h), color = [0,0,255], thickness=2) # 绘制圆形人脸区域 radius表示半径 cv.circle(img, center = (x + w//2, y + h//2), radius = w//2, color = [0,255,0], thickness = 2) # 设置图片可以手动调节大小 cv.namedWindow("Easmount-CSDN", 0) # 显示图片 cv.imshow("Easmount-CSDN", img) # 等待显示 设置任意键退出程序 cv.waitKey(0) cv.destroyAllWindows()
原图:
uchar GetMinBinary(uchar *binary) { // 计算8个二进制 uchar LBPValue[8] = { 0 }; for (int i = 0; i <= 7; ++i) { LBPValue[0] += binary[i] << (7 - i); LBPValue[1] += binary[(i + 7) % 8] << (7 - i); LBPValue[2] += binary[(i + 6) % 8] << (7 - i); LBPValue[3] += binary[(i + 5) % 8] << (7 - i); LBPValue[4] += binary[(i + 4) % 8] << (7 - i); LBPValue[5] += binary[(i + 3) % 8] << (7 - i); LBPValue[6] += binary[(i + 2) % 8] << (7 - i); LBPValue[7] += binary[(i + 1) % 8] << (7 - i); } // 选择最小的 uchar minValue = LBPValue[0]; for (int i = 1; i <= 7; ++i) { if (LBPValue[i] < minValue) { minValue = LBPValue[i]; } } return minValue; } //计算9种等价模式 int ComputeValue9(int value58) { int value9 = 0; switch (value58) { case 1: value9 = 1; break; case 2: value9 = 2; break; case 4: value9 = 3; break; case 7: value9 = 4; break; case 11: value9 = 5; break; case 16: value9 = 6; break; case 22: value9 = 7; break; case 29: value9 = 8; break; case 58: value9 = 9; break; } return value9; } //灰度不变常规LBP(256) void NormalLBPImage(const Mat &srcImage, Mat &LBPImage) { CV_Assert(srcImage.depth() == CV_8U && srcImage.channels() == 1); LBPImage.create(srcImage.size(), srcImage.type()); Mat extendedImage; copyMakeBorder(srcImage, extendedImage, 1, 1, 1, 1, BORDER_DEFAULT); // 计算LBP特征图 int heightOfExtendedImage = extendedImage.rows; int widthOfExtendedImage = extendedImage.cols; int widthOfLBP = LBPImage.cols; uchar *rowOfExtendedImage = extendedImage.data + widthOfExtendedImage + 1; uchar *rowOfLBPImage = LBPImage.data; for (int y = 1; y <= heightOfExtendedImage - 2; ++y, rowOfExtendedImage += widthOfExtendedImage, rowOfLBPImage += widthOfLBP) { // 列 uchar *colOfExtendedImage = rowOfExtendedImage; uchar *colOfLBPImage = rowOfLBPImage; for (int x = 1; x <= widthOfExtendedImage - 2; ++x, ++colOfExtendedImage, ++colOfLBPImage) { // 计算LBP值 int LBPValue = 0; if (colOfExtendedImage[0 - widthOfExtendedImage - 1] >= colOfExtendedImage[0]) LBPValue += 128; if (colOfExtendedImage[0 - widthOfExtendedImage] >= colOfExtendedImage[0]) LBPValue += 64; if (colOfExtendedImage[0 - widthOfExtendedImage + 1] >= colOfExtendedImage[0]) LBPValue += 32; if (colOfExtendedImage[0 + 1] >= colOfExtendedImage[0]) LBPValue += 16; if (colOfExtendedImage[0 + widthOfExtendedImage + 1] >= colOfExtendedImage[0]) LBPValue += 8; if (colOfExtendedImage[0 + widthOfExtendedImage] >= colOfExtendedImage[0]) LBPValue += 4; if (colOfExtendedImage[0 + widthOfExtendedImage - 1] >= colOfExtendedImage[0]) LBPValue += 2; if (colOfExtendedImage[0 - 1] >= colOfExtendedImage[0]) LBPValue += 1; colOfLBPImage[0] = LBPValue; } } } // 等价灰度不变LBP(58) void UniformNormalLBPImage(const Mat &srcImage, Mat &LBPImage)// 计算等价模式LBP特征图 { // 参数检查,内存分配 CV_Assert(srcImage.depth() == CV_8U && srcImage.channels() == 1); LBPImage.create(srcImage.size(), srcImage.type()); // 计算LBP图 // 扩充原图像边界,便于边界处理 Mat extendedImage; copyMakeBorder(srcImage, extendedImage, 1, 1, 1, 1, BORDER_DEFAULT); // 构建LBP 等价模式查找表 //int table[256]; //BuildUniformPatternTable(table); // LUT(256种每一种模式对应的等价模式) static const int table[256] = { 1, 2, 3, 4, 5, 0, 6, 7, 8, 0, 0, 0, 9, 0, 10, 11, 12, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 14, 0, 15, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 20, 0, 21, 22, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 27, 0, 28, 29, 30, 31, 0, 32, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, 34, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 37, 38, 0, 39, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42 , 43, 44, 0, 45, 0, 0, 0, 46, 0, 0, 0, 0, 0, 0, 0, 47, 48, 49, 0, 50, 0, 0, 0, 51, 52, 53, 0, 54, 55, 56, 57, 58 }; // 计算LBP int heightOfExtendedImage = extendedImage.rows; int widthOfExtendedImage = extendedImage.cols; int widthOfLBP = LBPImage.cols; uchar *rowOfExtendedImage = extendedImage.data + widthOfExtendedImage + 1; uchar *rowOfLBPImage = LBPImage.data; for (int y = 1; y <= heightOfExtendedImage - 2; ++y, rowOfExtendedImage += widthOfExtendedImage, rowOfLBPImage += widthOfLBP) { // 列 uchar *colOfExtendedImage = rowOfExtendedImage; uchar *colOfLBPImage = rowOfLBPImage; for (int x = 1; x <= widthOfExtendedImage - 2; ++x, ++colOfExtendedImage, ++colOfLBPImage) { // 计算LBP值 int LBPValue = 0; if (colOfExtendedImage[0 - widthOfExtendedImage - 1] >= colOfExtendedImage[0]) LBPValue += 128; if (colOfExtendedImage[0 - widthOfExtendedImage] >= colOfExtendedImage[0]) LBPValue += 64; if (colOfExtendedImage[0 - widthOfExtendedImage + 1] >= colOfExtendedImage[0]) LBPValue += 32; if (colOfExtendedImage[0 + 1] >= colOfExtendedImage[0]) LBPValue += 16; if (colOfExtendedImage[0 + widthOfExtendedImage + 1] >= colOfExtendedImage[0]) LBPValue += 8; if (colOfExtendedImage[0 + widthOfExtendedImage] >= colOfExtendedImage[0]) LBPValue += 4; if (colOfExtendedImage[0 + widthOfExtendedImage - 1] >= colOfExtendedImage[0]) LBPValue += 2; if (colOfExtendedImage[0 - 1] >= colOfExtendedImage[0]) LBPValue += 1; colOfLBPImage[0] = table[LBPValue]; } } } // 等价旋转不变LBP(9) void UniformRotInvLBPImage(const Mat &srcImage, Mat &LBPImage) { // 参数检查,内存分配 CV_Assert(srcImage.depth() == CV_8U && srcImage.channels() == 1); LBPImage.create(srcImage.size(), srcImage.type()); // 扩充图像,处理边界情况 Mat extendedImage; copyMakeBorder(srcImage, extendedImage, 1, 1, 1, 1, BORDER_DEFAULT); // 构建LBP 等价模式查找表 //int table[256]; //BuildUniformPatternTable(table); // 通过查找表 static const int table[256] = { 1, 2, 3, 4, 5, 0, 6, 7, 8, 0, 0, 0, 9, 0, 10, 11, 12, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 14, 0, 15, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 20, 0, 21, 22, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 27, 0, 28, 29, 30, 31, 0, 32, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, 34, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 37, 38, 0, 39, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42 , 43, 44, 0, 45, 0, 0, 0, 46, 0, 0, 0, 0, 0, 0, 0, 47, 48, 49, 0, 50, 0, 0, 0, 51, 52, 53, 0, 54, 55, 56, 57, 58 }; uchar binary[8] = { 0 };// 记录每个像素的LBP值 int heigthOfExtendedImage = extendedImage.rows; int widthOfExtendedImage = extendedImage.cols; int widthOfLBPImage = LBPImage.cols; uchar *rowOfExtendedImage = extendedImage.data + widthOfExtendedImage + 1; uchar *rowOfLBPImage = LBPImage.data; for (int y = 1; y <= heigthOfExtendedImage - 2; ++y, rowOfExtendedImage += widthOfExtendedImage, rowOfLBPImage += widthOfLBPImage) { // 列 uchar *colOfExtendedImage = rowOfExtendedImage; uchar *colOfLBPImage = rowOfLBPImage; for (int x = 1; x <= widthOfExtendedImage - 2; ++x, ++colOfExtendedImage, ++colOfLBPImage) { // 计算旋转不变LBP(最小的二进制模式) binary[0] = colOfExtendedImage[0 - widthOfExtendedImage - 1] >= colOfExtendedImage[0] ? 1 : 0; binary[1] = colOfExtendedImage[0 - widthOfExtendedImage] >= colOfExtendedImage[0] ? 1 : 0; binary[2] = colOfExtendedImage[0 - widthOfExtendedImage + 1] >= colOfExtendedImage[0] ? 1 : 0; binary[3] = colOfExtendedImage[0 + 1] >= colOfExtendedImage[0] ? 1 : 0; binary[4] = colOfExtendedImage[0 + widthOfExtendedImage + 1] >= colOfExtendedImage[0] ? 1 : 0; binary[5] = colOfExtendedImage[0 + widthOfExtendedImage] >= colOfExtendedImage[0] ? 1 : 0; binary[6] = colOfExtendedImage[0 + widthOfExtendedImage - 1] >= colOfExtendedImage[0] ? 1 : 0; binary[7] = colOfExtendedImage[0 - 1] >= colOfExtendedImage[0] ? 1 : 0; int minValue = GetMinBinary(binary); // 计算58种等价模式LBP int value58 = table[minValue]; // 计算9种等价模式 colOfLBPImage[0] = ComputeValue9(value58); } } } //灰度不变常规LBP(256)特征 void NormalLBPFeature(const Mat &srcImage, Size cellSize, Mat &featureVector) { // 参数检查,内存分配 CV_Assert(srcImage.depth() == CV_8U && srcImage.channels() == 1); Mat LBPImage; NormalLBPImage(srcImage, LBPImage); // 计算cell个数 int widthOfCell = cellSize.width; int heightOfCell = cellSize.height; int numberOfCell_X = srcImage.cols / widthOfCell;// X方向cell的个数 int numberOfCell_Y = srcImage.rows / heightOfCell; // 特征向量的个数 int numberOfDimension = 256 * numberOfCell_X*numberOfCell_Y; featureVector.create(1, numberOfDimension, CV_32FC1); featureVector.setTo(Scalar(0)); // 计算LBP特征向量 int stepOfCell = srcImage.cols; int pixelCount = cellSize.width*cellSize.height; float *dataOfFeatureVector = (float *)featureVector.data; // cell的特征向量在最终特征向量中的起始位置 int index = -256; for (int y = 0; y <= numberOfCell_Y - 1; ++y) { for (int x = 0; x <= numberOfCell_X - 1; ++x) { index += 256; // 计算每个cell的LBP直方图 Mat cell = LBPImage(Rect(x * widthOfCell, y * heightOfCell, widthOfCell, heightOfCell)); uchar *rowOfCell = cell.data; for (int y_Cell = 0; y_Cell <= cell.rows - 1; ++y_Cell, rowOfCell += stepOfCell) { uchar *colOfCell = rowOfCell; for (int x_Cell = 0; x_Cell <= cell.cols - 1; ++x_Cell, ++colOfCell) { ++dataOfFeatureVector[index + colOfCell[0]]; } } // 一定要归一化!否则分类器计算误差很大 for (int i = 0; i <= 255; ++i) dataOfFeatureVector[index + i] /= pixelCount; } } } // 等价灰度不变LBP(58)特征 void UniformNormalLBPFeature(const Mat &srcImage, Size cellSize, Mat &featureVector) { // 参数检查,内存分配 CV_Assert(srcImage.depth() == CV_8U && srcImage.channels() == 1); Mat LBPImage; UniformNormalLBPImage(srcImage, LBPImage); // 计算cell个数 int widthOfCell = cellSize.width; int heightOfCell = cellSize.height; int numberOfCell_X = srcImage.cols / widthOfCell;// X方向cell的个数 int numberOfCell_Y = srcImage.rows / heightOfCell; // 特征向量的个数 int numberOfDimension = 58 * numberOfCell_X*numberOfCell_Y; featureVector.create(1, numberOfDimension, CV_32FC1); featureVector.setTo(Scalar(0)); // 计算LBP特征向量 int stepOfCell = srcImage.cols; int index = -58;// cell的特征向量在最终特征向量中的起始位置 float *dataOfFeatureVector = (float *)featureVector.data; for (int y = 0; y <= numberOfCell_Y - 1; ++y) { for (int x = 0; x <= numberOfCell_X - 1; ++x) { index += 58; // 计算每个cell的LBP直方图 Mat cell = LBPImage(Rect(x * widthOfCell, y * heightOfCell, widthOfCell, heightOfCell)); uchar *rowOfCell = cell.data; int sum = 0; // 每个cell的等价模式总数 for (int y_Cell = 0; y_Cell <= cell.rows - 1; ++y_Cell, rowOfCell += stepOfCell) { uchar *colOfCell = rowOfCell; for (int x_Cell = 0; x_Cell <= cell.cols - 1; ++x_Cell, ++colOfCell) { if (colOfCell[0] != 0) { // 在直方图中转化为0~57,所以是colOfCell[0] - 1 ++dataOfFeatureVector[index + colOfCell[0] - 1]; ++sum; } } } // 一定要归一化!否则分类器计算误差很大 for (int i = 0; i <= 57; ++i) dataOfFeatureVector[index + i] /= sum; } } } // 等价旋转不变LBP(9)特征 void UniformRotInvLBPFeature(const Mat &srcImage, Size cellSize, Mat &featureVector) { // 参数检查,内存分配 CV_Assert(srcImage.depth() == CV_8U && srcImage.channels() == 1); Mat LBPImage; UniformRotInvLBPImage(srcImage, LBPImage); // 计算cell个数 int widthOfCell = cellSize.width; int heightOfCell = cellSize.height; int numberOfCell_X = srcImage.cols / widthOfCell;// X方向cell的个数 int numberOfCell_Y = srcImage.rows / heightOfCell; // 特征向量的个数 int numberOfDimension = 9 * numberOfCell_X*numberOfCell_Y; featureVector.create(1, numberOfDimension, CV_32FC1); featureVector.setTo(Scalar(0)); // 计算LBP特征向量 int stepOfCell = srcImage.cols; int index = -9;// cell的特征向量在最终特征向量中的起始位置 float *dataOfFeatureVector = (float *)featureVector.data; for (int y = 0; y <= numberOfCell_Y - 1; ++y) { for (int x = 0; x <= numberOfCell_X - 1; ++x) { index += 9; // 计算每个cell的LBP直方图 Mat cell = LBPImage(Rect(x * widthOfCell, y * heightOfCell, widthOfCell, heightOfCell)); uchar *rowOfCell = cell.data; int sum = 0; // 每个cell的等价模式总数 for (int y_Cell = 0; y_Cell <= cell.rows - 1; ++y_Cell, rowOfCell += stepOfCell) { uchar *colOfCell = rowOfCell; for (int x_Cell = 0; x_Cell <= cell.cols - 1; ++x_Cell, ++colOfCell) { if (colOfCell[0] != 0) { // 在直方图中转化为0~8,所以是colOfCell[0] - 1 ++dataOfFeatureVector[index + colOfCell[0] - 1]; ++sum; } } } // 直方图归一化 for (int i = 0; i <= 8; ++i) dataOfFeatureVector[index + i] /= sum; } } }
图 2.4.1 原图
图 2.4.2 灰度不变常规LBP
图 2.4.3 等价灰度不变LBP
图 2.4.4 等价旋转不变LBP
LBP曾广泛应用于人脸检测及人脸识别应用中,但在深度学习与卷积神将网络迅猛发展的今天,以LBP为特征的检测及识别算法并不具有竞争力,但是作为学习案例还是很有借鉴意义的,后续也会陆续写一些基于深度学习的人脸检测、人脸识别算法的博客,可以继续关注。