- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- 大规模语言模型从理论到实践 分布式训练的集群架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践分布式训练的集群架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModels,LLMs)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了突破性进展。LLMs,如BERT、GPT-3等,通
- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- Hugging Face 模型格式全解析:从 PyTorch 到 GGUF
mingo_敏
DeepLearningpytorch人工智能python
HuggingFace模型格式全解析:从PyTorch到GGUFHuggingFace生态支持多种模型格式,以满足不同场景下的存储、部署和推理需求。以下是主流格式的技术解析与演进脉络:1.PyTorch原生格式(.pt/.pth)特性:直接保存PyTorch的state_dict(模型参数)或完整模型(含结构)。兼容性强,与PyTorch训练/推理流程深度集成。文件体积较大,加载速度较慢,存在安全
- 【机器视觉】少量样本图片情况下的图片识别技术方案
yuanpan
机器学习人工智能计算机视觉
在只有少量图片样本的情况下,进行图像识别是一个具有挑战性的任务。以下是一些应对小样本问题的有效方案:1.数据增强(DataAugmentation)通过对现有样本进行各种变换来生成更多的训练数据,例如:几何变换:旋转、缩放、平移、翻转等。颜色变换:调整亮度、对比度、饱和度等。噪声添加:高斯噪声、椒盐噪声等。裁剪和填充:随机裁剪图像的一部分或填充边缘。工具:Keras:ImageDataGenera
- 【LeetCode 热题100】 23. 合并 K 个升序链表的算法思路及python代码
pljnb
LeetCode热题100算法leetcode链表
23.合并K个升序链表给你一个链表数组,每个链表都已经按升序排列。请你将所有链表合并到一个升序链表中,返回合并后的链表。示例1:输入:lists=[[1,4,5],[1,3,4],[2,6]]输出:[1,1,2,3,4,4,5,6]解释:链表数组如下:[1->4->5,1->3->4,2->6]将它们合并到一个有序链表中得到。1->1->2->3->4->4->5->6示例2:输入:lists=[
- 【Leetcode刷题随笔】59 螺旋矩阵
Poor_DayDreamer
leetcode数组篇MediumTagleetcode矩阵算法
1.题目描述给定一个正整数n,生成一个包含1到n2所有元素,且元素按顺时针顺序螺旋排列的nxn正方形矩阵matrix。可结合以下原题链接阅读。原题链接:59螺旋矩阵2.解题思路本题为模拟矩阵填充过程,不需要设计算法,只要完成正确的填充过程即可。首先初始化一个nxn的二维矩阵(涉及到动态内存分配),从矩阵左上角开始往顺时针填充,关键在于填充的转角处不要重复填充,所以对于每条边都要遵循严格的统一规则,
- 【Leetcode刷题随笔】203移除链表元素
Poor_DayDreamer
leetcode链表篇leetcode链表算法
1.题目描述题意:删除链表中等于给定值val的所有节点。示例1:输入:head=[1,2,6,3,4,5,6],val=6输出:[1,2,3,4,5]示例2:输入:head=[],val=1输出:[]示例3:输入:head=[7,7,7,7],val=7输出:[]原题链接:203移除链表元素2.解题思路由于链表本身的性质,移除链表的某个节点a,只需要将前一个节点的next指针指向a的下一个节点即可
- 【Leetcode刷题随笔】844 比较含退格的字符串
Poor_DayDreamer
移除元素篇字符串篇leetcode算法职场和发展
1.题目描述给定s和t两个字符串,比较s和t是否在删除所有由#字符表示的退格操作后相等。退格操作会删除其前面(不包括#本身)的一个字符,如果前面没有字符则忽略该#。如果字符串的末尾有多个退格符,它们会相互抵消,直到没有退格符剩余或者所有字符都被删除。示例1:输入:s=“ab#c”,t=“ad#c”输出:true解释:s和t都会变成“ac”,因为#前面的b和d都被删除。示例2:输入:s=“ab##”
- 【Leetcode刷题随笔】2765最长交替子数组
Poor_DayDreamer
leetcode数组篇leetcode算法职场和发展
1.题目描述:该题目标是在一个整数数组nums中寻找最长的“交替子数组”。这种交替子数组的特点是:其元素按照“递增1,递减1,递增1…”的模式循环排列,且子数组的长度必须大于1,例如数组nums=[2,3,4,3,4],交替子数组有[2,3],[3,4],[3,4,3]和[3,4,3,4]。最长的子数组为[3,4,3,4],长度为4。详细题目描述见原题:原题。2.1解题思路一(双层循环):这道题有
- LeetCode刷题笔记
小李李李李腊八
leetcode算法java
leetcode_01两数之和斐波那契数列三个数最大乘积反转链表x的平方根环形列表LeetCode随笔两数之和给定一个整数数组nums和一个整数目标值target,请你在该数组中找出和为目标值target的那两个整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。暴力法记录下数组第一个数值,对数组进行循环,将之后的值
- 高频SQL50题 第一天 | 1757. 可回收且低脂的产品、584. 寻找用户推荐人、595. 大的国家、1683. 无效的推文、1148. 文章浏览 I
榛果咖啡有点苦
高频SQL50题mysql
1757.可回收且低脂的产品题目链接:https://leetcode.cn/problems/recyclable-and-low-fat-products/description/?envType=study-plan-v2&envId=sql-free-50状态:已完成考点:无selectproduct_idfromProductswherelow_fats='Y'andrecyclable
- 动态规划问题
慕雪_mx
动态规划算法数据结构
动态规划问题最长回文子串题目:给你一个字符串s,找到s中最长的回文子串,并输出.(leetcode5)示例1:输入:s="babad"输出:"bab"解释:"aba"同样是符合题意的答案。示例2:输入:s="cbbd"输出:"bb"代码实现:char*longestPalindrome(char*s){intn=strlen(s);if(n=n)break;if(s[i]!=s[j]){dp[i]
- 模型微调:让AI更懂你的魔法棒
带上一无所知的我
pytorch人工智能python
模型微调:让AI更懂你的魔法棒✨在人工智能的世界里,模型微调(Fine-tuning)就像是一位魔法师用魔法棒对预训练模型进行“个性化改造”,让它更适应特定的任务。今天,我们就来深入探讨模型微调的技术细节,让你也能像魔法师一样,轻松驾驭AI模型!什么是模型微调?模型微调是指在预训练模型的基础上,通过少量的特定任务数据进行训练,使模型更好地适应新任务的技术。预训练模型通常是基于大规模数据集(如Ima
- 聊聊关于Python与人工智能那些事
小G-biu-
python人工智能tensorflow
Python与人工智能:介绍Python在人工智能方面的应用Python是一种广泛使用的编程语言,也是人工智能领域中最受欢迎的语言之一。Python提供了许多用于构建和训练人工智能模型的库和框架。本文将介绍一些常见的人工智能技术以及Python在这些技术中的应用。OpenAIOpenAI是一个非营利组织,旨在推动人工智能的发展并促进其对人类的利益。OpenAI通过开发人工智能技术、研究人工智能的影
- 人形机器人报告:新一代GPU、具身智能与AI应用
小报告达人
机器人人工智能
今天分享的是人形机器人系列深度研究报告:《人形机器人专题:新一代GPU、具身智能与AI应用》。(报告出品方:中泰证券)核心观点GTC2024召开在即,关注新一代GPU、具身智能、AI应用三大方向。GTC2024将于当地时间3月18-21日在美国加州圣何塞会议中心及线上举行,预计发布加速计算、生成式AI以及机器人领域突破性成果。建议关注三大方向:1)B100及后续芯片路线。B100预计采用Black
- solution的一知半解
zilan23
英文
1.solution作为“解决办法;解答”意义时,后接介词to,for,of均可Perhapseconomyisthesolutionof/toyourfinancialtroubles.也许节约是解决你财务困难的办法。Thereseemstobenosolutiontotheproblem.这个问题似乎没有解决的办法。Wehavenowworkedoutabettersolutionforthe
- 使用 TensorFlow 进行图像处理:深度解析卷积神经网络(CNN)
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow图像处理cnn人工智能机器学习pythonai
目录使用TensorFlow进行图像处理:深度解析卷积神经网络(CNN)1.什么是卷积神经网络(CNN)?CNN的基本结构为什么CNN适合图像处理?2.使用TensorFlow构建CNN2.1环境准备2.2加载并预处理MNIST数据集2.3构建CNN模型2.4编译和训练模型2.5评估模型3.CNN的优化与改进3.1使用数据增强3.2调整网络结构4.CNN在其他图像处理任务中的应用5.总结参考文献在
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- LeetCode 热题 100_跳跃游戏(78_55_中等_C++)(贪心算法)
Dream it possible!
LeetCode热题100leetcodec++贪心算法算法
LeetCode热题100_跳跃游戏(78_55)题目描述:输入输出样例:题解:解题思路:思路一(贪心算法):代码实现代码实现(思路一(贪心算法)):以思路一为例进行调试题目描述:给你一个非负整数数组nums,你最初位于数组的第一个下标。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标,如果可以,返回true;否则,返回false。输入输出样例:示例1:输入:num
- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
引言近年来,深度强化学习(DRL)已经成为解决复杂决策问题的一个强有力工具,尤其是在自然语言处理(NLP)领域的广泛应用。通过不断优化决策策略,DRL能在大量数据中学习最佳行为,尤其是大型语言模型(LLM)在任务中展现出的巨大潜力。然而,随着模型规模的扩大和任务复杂性的增加,传统的强化学习算法开始暴露出训练效率低、收敛速度慢等问题。为了解决这些挑战,DeepSeek公司提出了一个新的强化学习算法—
- leetcode501-二叉搜索树中的众数
记得早睡~
算法小课堂leetcode算法javascript数据结构
leetcode501思路由于是二叉搜索树,那么我们知道它的特性:使用中序遍历得到的是从小到大排序的,所以我们利用这个规则,使用count来统计每次出现一个新的数的总个数,maxCount统计最大的个数值,result来存储二叉树中的众数,也就是要得到的结果值,pre用于统计前一个节点值初始化定义好值以后,我们需要使用中序遍历,中间处理逻辑值当pre还不存在的时候或者前一个节点跟后一个节点不相同时
- leetcode530-二叉搜索树的最小绝对值
记得早睡~
算法小课堂leetcodetypescriptjavascript算法数据结构
leetcode530思路这里题目有确切说明这个二叉树是:二叉搜索树那么我们可以想到二叉搜索树的特性,利用中序遍历:左中右得到的结果是从小到达排列的所以我们就只需要计算出每一个节点和前一个节点之间的差值,然后保存最小的差值就是本题答案所以我们在中序遍历的过程中需要存储最小的差值,我们首先初始化result为无穷大,还需要存储前一个节点,用于进行比较,每次遍历到一个节点的时候,我们比较resul和r
- Vue.js的watch监听
阿珊和她的猫
vue.js前端javascript
前端开发工程师、技术日更博主、已过CET6阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1牛客高级专题作者、打造专栏《前端面试必备》、《2024面试高频手撕题》、《前端求职突破计划》蓝桥云课签约作者、上架课程《Vue.js和Egg.js开发企业级健康管理项目》、《带你从入门到实战全面掌握uni-app》文章目录引言`watch`选项的基本概念`watch`选项的基本语法`watch
- LeetCode98-验证二叉搜索树
学习的学习者
LeetCodePython二叉搜索树
上个星期和导师去了华农一趟名义上是和导师去参加一个国家级的项目其实没我啥事都是我导师在那口若悬河当时和那边的本科生去了另一间会议室交流了关于GAN的知识偶然听说大家都在用pytorch好像最新版的也挺好用的反正就是学术界目前主要用这个框架工业界主要用Tensorflow(没办法,Google出品)这两天也拿来瞧了瞧好像也确实可以的!!!98-验证二叉搜索树给定一个二叉树,判断其是否是一个有效的二叉
- LeetCode第89题_格雷编码
@蓝莓果粒茶
算法leetcode算法职场和发展c++pythonunity游戏程序
LeetCode第89题:格雷编码题目描述n位格雷码序列是一个由2^n个整数组成的序列,其中:每个整数都在范围[0,2^n-1]内(含0和2^n-1)第一个整数是0一个整数在序列中出现不超过一次每对相邻整数的二进制表示恰好一位不同,且第一个和最后一个整数的二进制表示恰好一位不同给你一个整数n,返回任一有效的n位格雷码序列。难度中等问题链接格雷编码示例示例1:输入:n=2输出:[0,1,3,2]解释
- 通过LoRA(Low-Rank Adaptation)低秩矩阵分解来高效微调权重变化
背太阳的牧羊人
模型微调矩阵线性代数深度学习人工智能自然语言处理LoRA
LoRA的原理LoRA的核心思想是用低秩矩阵分解来建模参数的变化,而不是直接调整整个权重矩阵。这种方法通过减少微调的参数数量来提高训练效率。基本公式假设预训练模型的某一层权重为(W\in\mathbb{R}^{d\timesk}),LoRA的调整方式是:[W’=W+\DeltaW]其中(\DeltaW)是调整后的权重变化。LoRA假设权重变化(\DeltaW)的秩较低,可以表示为两个低秩矩阵的乘积
- 神经网络之参数初始化
硬水果糖
人工智能神经网络人工智能深度学习
引言:参数初始化是训练深度神经网络的一个关键步骤,目的是给网络中权重(weights)和偏置(biases)赋予初始值。合适的参数初始化方法有助于提高训练速度、避免梯度消失/爆炸问题,并且加速网络的收敛。一、参数初始化目的避免梯度消失和梯度爆炸:在深度神经网络中,参数初始化对梯度流动非常重要。如果初始权重值太大或太小,可能导致梯度爆炸或梯度消失,从而增加网络的训练难度。加速收敛:良好的初始化可以帮
- flutter 专题 一百零三
leluckys
Flutter面试与实战fluttercocoamacos
前不久,谷歌官方正式发布了Flutter的首个发布预览版(ReleasePreview1),这标志着谷歌进入了Flutter正式版(1.0)发布前的最后阶段,同时作为Google的重量级跨平台开发方案,此次更新也吸引了多数的移动开发者的关注。使用Flutter从头开始写一个App是一件非常轻松惬意的事情,但在原生APP中接入Flutter会是什么效果呢,似乎并不是一件容易的事情,下面就讲解在iOS
- 《算法笔记》9.4小节——数据结构专题(2)->二叉查找树(BST) 问题 A: 二叉排序树
圣保罗的大教堂
《算法笔记》算法
题目描述输入一系列整数,建立二叉排序数,并进行前序,中序,后序遍历。输入输入第一行包括一个整数n(1#include#include#include#include#include#include#include#include#include#include#include#include#include#defineINF0x3f3f3f3f#definedb1(x)coutleft);Fre
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs