7.resnet50网络实现

代码如下:

import torch.nn as nn
import torch


# Resnet 18/34使用此残差块
class BasicBlock(nn.Module):  # 卷积2层,F(X)和X的维度相等
    # expansion是F(X)相对X维度拓展的倍数
    expansion = 1  # 残差映射F(X)的维度有没有发生变化,1表示没有变化,downsample=None

    # in_channel输入特征矩阵的深度(图像通道数,如输入层有RGB三个分量,使得输入特征矩阵的深度是3),out_channel输出特征矩阵的深度(卷积核个数),stride卷积步长,downsample是用来将残差数据和卷积数据的shape变的相同,可以直接进行相加操作。
    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)  # BN层在conv和relu层之间

        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        # out=F(X)+X
        out += identity
        out = self.relu(out)

        return out


# Resnet 50/101/152使用此残差块
class Bottleneck(nn.Module):  # 卷积3层,F(X)和X的维度不等
    """
    注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
    但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
    这么做的好处是能够在top1上提升大概0.5%的准确率。
    """
    # expansion是F(X)相对X维度拓展的倍数
    expansion = 49

    def __init__(self, in_channel, out_channel, stride=1, downsample=None, groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()

        width = int(out_channel * (width_per_group / 64.)) * groups
        # 此处width=out_channel

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,kernel_size=1, stride=1, bias=False)  # squeeze channels
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,kernel_size=1, stride=1, bias=False)  # unsqueeze channels
        self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        # downsample是用来将残差数据和卷积数据的shape变的相同,可以直接进行相加操作。
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        # out=F(X)+X
        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self,
                 block,  # 使用的残差块类型
                 blocks_num,  # 每个卷积层,使用残差块的个数
                 num_classes=1000,  # 训练集标签的分类个数
                 include_top=True,  # 是否在残差结构后接上pooling、fc、softmax
                 groups=1,
                 width_per_group=64):

        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64  # 第一层卷积输出特征矩阵的深度,也是后面层输入特征矩阵的深度

        self.groups = groups
        self.width_per_group = width_per_group

        # 输入层有RGB三个分量,使得输入特征矩阵的深度是3
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)

        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # _make_layer(残差块类型,残差块中第一个卷积层的卷积核个数,残差块个数,残差块中卷积步长)函数:生成多个连续的残差块的残差结构
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)

        if self.include_top:  # 默认为True,接上pooling、fc、softmax
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # 自适应平均池化下采样,无论输入矩阵的shape为多少,output size均为的高宽均为1x1
            # 使矩阵展平为向量,如(W,H,C)->(1,1,W*H*C),深度为W*H*C
            self.fc = nn.Linear(512 * block.expansion, num_classes)  # 全连接层,512 * block.expansion为输入深度,num_classes为分类类别个数

        for m in self.modules():  # 初始化
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    # _make_layer()函数:生成多个连续的残差块,(残差块类型,残差块中第一个卷积层的卷积核个数,残差块个数,残差块中卷积步长)
    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None

        # 寻找:卷积步长不为1或深度扩张有变化,导致F(X)与X的shape不同的残差块,就要对X定义下采样函数,使之shape相同
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        # layers用于顺序储存各连续残差块
        # 每个残差结构,第一个残差块均为需要对X下采样的残差块,后面的残差块不需要对X下采样
        layers = []
        # 添加第一个残差块,第一个残差块均为需要对X下采样的残差块
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))

        self.in_channel = channel * block.expansion
        # 后面的残差块不需要对X下采样
        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))
        # 以非关键字参数形式,将layers列表,传入Sequential(),使其中残差块串联为一个残差结构
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)

        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:  # 一般为True
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x

# 至此resnet的基本框架就写好了
# ——————————————————————————————————————————————————————————————————————————————————
# 下面定义不同层的resnet


def resnet50(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet34(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


def resnext50_32x4d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
    groups = 32
    width_per_group = 4
    return ResNet(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)


def resnext101_32x8d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
    groups = 32
    width_per_group = 8
    return ResNet(Bottleneck, [3, 4, 23, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

if __name__ == '__main__':

    print("...........................................")
    model=resnet50()
    print(model)

    input=torch.ones((64,3,224,224))

    print("...........................................")
    output=model(input)
    print(output.shape)

你可能感兴趣的:(网络)