深度神经网络训练

求《神经网络与深度学习讲义》全文免费下载百度网盘资源,谢谢~

谷歌人工智能写作项目:神经网络伪原创

深度神经网络目前有哪些成功的应用

深度学习最成功的应用是在音视频的识别上,几乎所有的商用语音识别都是深度学习来完成的写作猫。其次深度学习应用最成功的领域就是图像识别,目前识别准确率已经超越人类。

深度学习成了图像识别的标配,以至于目前做图像不懂深度学习都不好意思跟人打招呼。(这种状态个人觉得是不好的)其中图像识别中,应用最广的是人脸识别。

自然语言理解方面,深度学习也非常活跃,主要是使用一种叫做LSTM的深度学习方法。

深度学习已经深入各个领域无人车,智能回答,智能翻译,天气预报,股票预测,人脸比对,声纹比对,等其他许多有趣的应用,比如智能插画,自动作诗,自动写作文,等都可以通过深度学习来完成深度神经网络目前有哪些成功的应用。

《神经网络与深度学习讲义》pdf下载在线阅读全文,求百度网盘云资源

神经网络、深度学习、机器学习是什么?有什么区别和联系?

深度学习是由深层神经网络+机器学习造出来的词。深度最早出现在deep belief network(深度(层)置信网络)。其出现使得沉寂多年的神经网络又焕发了青春。

GPU使得深层网络随机初始化训练成为可能。resnet的出现打破了层次限制的魔咒,使得训练更深层次的神经网络成为可能。深度学习是神经网络的唯一发展和延续。

在现在的语言环境下,深度学习泛指神经网络,神经网络泛指深度学习。在当前的语境下没有区别。定义生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

深度学习在乒乓球比赛视频分析中的应用有哪些?

深度学习在计算机视觉领域内的广泛使用给人们的日常生活带来了很多的便利。

使用深度学习的方法进行视频分析的速度非常快,平均每一帧图像仅需要0.5s左右的处理时间,所以应用深度学习方法对视频分析具有很高的研究价值与意义。

一,目标检测技术现状目标检测问题在深度学习领域一直受到研究者的关注,目标检测的目的简单来说就是要在待检测的--幅图像中找出目标的位置并预测类别概率。

在实际应用中,目标容易受到背景的干扰,比如当目标的颜色与背景颜色相似时,就会导致检测的效果不理想,再者,当目标发生形变或者各种姿态变化等原因也会导致最后的检测受到影响。

传统的目标检测方法通常采用人工来设计目标特征,这样做的缺点是成本太高。

二,深度学习在乒乓球比赛视频分析中的应用深度学习的核心思想是模拟哺乳动物大脑皮层的层级抽象结构,并以无监督学习的方式从输入数据(图片、视频、声音、文本等)中逐级提取特征,利用提取的特征完成目标任务。

深度学习是当前人工智能学中的一-个 热点研究方向,是相对于浅层学习( Shallow Leaning) 来说的,浅层学习是基于反向传播算法( Back Propagation) 的人工神经网络的基础上提出来的,利用反向传播算法,人工神经网络模型可以从大量训练数据集中应用统计学的方法得到特征规律进而对目标进行预测,其隐藏层只有一层。

由于浅层人工神经网络隐藏层较少,对于复杂问题参数难调,训练出来的效果不佳,当样本数量和计算单元有限时表示能力较差,同时算法的泛化能力差,浅层学习也就慢慢淡出了人们的视线。

相较于浅层学习,深度学习模型层数通常为5层,甚至更多。另一方面含有更多隐藏层可以学习到更多的目标特征,对特征的学习也更加深刻,从而可以提高识别物体的精度。

深度学习与神经网络有什么区别

找深度学习和神经网络的不同点,其实主要的就是:原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。

另外,深度学习作为机器学习的领域中一个新的研究方向,在被引进机器学习后,让机器学习可以更加的接近最初的目标,也就是人工智能。

深度学习主要就是对样本数据的内在规律还有表示层次的学习,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。

它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。

深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。

深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。而神经网络则是可以分为两种,一种是生物神经网络,而另一种则是人工神经网络。

生物神经网络就是生物的大脑神经元、主要是由细胞以及触点组成的,主要的作用就是让生物产生意识,或者是帮助生物实现思考还有行动的目的。神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。

人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

在工程与学术界也常直接简称为“神经网络”或类神经网络。

深度学习与神经网络有什么区别

深度学习与神经网络关系2017-01-10最近开始学习深度学习,基本上都是zouxy09博主的文章,写的蛮好,很全面,也会根据自己的思路,做下删减,细化。

五、Deep Learning的基本思想假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的。

信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。

当然了,如果丢掉的是没用的信息那多好啊),保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。

现在回到我们的主题Deep Learning,我们需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设我们设计了一个系统S(有n层),我们通过调整系统中参数,使得它的输出仍然是输入I,那么我们就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。

对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。

另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的Deep Learning方法。

上述就是Deep Learning的基本思想。六、浅层学习(Shallow Learning)和深度学习(Deep Learning)浅层学习是机器学习的第一次浪潮。

20世纪80年代末期,用于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。

人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显出优越性。

这个时候的人工神经网络,虽也被称作多层感知机(Multi-layer Perceptron),但实际是种只含有一层隐层节点的浅层模型。

20世纪90年代,各种各样的浅层机器学习模型相继被提出,例如支撑向量机(SVM,Support Vector Machines)、 Boosting、最大熵方法(如LR,Logistic Regression)等。

这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。

相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。深度学习是机器学习的第二次浪潮。

2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。

这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wise pre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。

当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。

深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。

(多层的好处是可以用较少的参数表示复杂的函数)深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。

因此,“深度模型”是手段,“特征学习”是目的。

区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。

与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

七、Deep learning与Neural Network深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展。

大约二三十年前,neural network曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:1)比较容易过拟合,参数比较难tune,而且需要不少trick;2)训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;所以中间有大约20多年的时间,神经网络被关注很少,这段时间基本上是SVM和boosting算法的天下。

但是,一个痴心的老先生Hinton,他坚持了下来,并最终(和其它人一起Bengio、Yann.lecun等)提成了一个实际可行的deep learning框架。

Deep learning与传统的神经网络之间有相同的地方也有很多不同。

二者的相同在于deep learning采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logistic regression模型;这种分层结构,是比较接近人类大脑的结构的。

而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。

传统神经网络(这里作者主要指前向神经网络)中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。

而deep learning整体上是一个layer-wise的训练机制。

这样做的原因是因为,如果采用back propagation的机制,对于一个deep network(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradient diffusion(梯度扩散)。

这个问题我们接下来讨论。

八、Deep learning训练过程8.1、传统神经网络的训练方法为什么不能用在深度神经网络BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想。

深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源。

BP算法存在的问题:(1)梯度越来越稀疏:从顶层越往下,误差校正信号越来越小;(2)收敛到局部最小值:尤其是从远离最优区域开始的时候(随机值初始化会导致这种情况的发生);(3)一般,我们只能用有标签的数据来训练:但大部分的数据是没标签的,而大脑可以从没有标签的的数据中学习;8.2、deep learning训练过程如果对所有层同时训练,时间复杂度会太高;如果每次训练一层,偏差就会逐层传递。

这会面临跟上面监督学习中相反的问题,会严重欠拟合(因为深度网络的神经元和参数太多了)。

2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。

方法是:1)首先逐层构建单层神经元,这样每次都是训练一个单层网络。2)当所有层训练完后,Hinton使用wake-sleep算法进行调优。

将除最顶层的其它层间的权重变为双向的,这样最顶层仍然是一个单层神经网络,而其它层则变为了图模型。向上的权重用于“认知”,向下的权重用于“生成”。然后使用Wake-Sleep算法调整所有的权重。

让认知和生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。

比如顶层的一个结点表示人脸,那么所有人脸的图像应该激活这个结点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。Wake-Sleep算法分为醒(wake)和睡(sleep)两个部分。

1)wake阶段:认知过程,通过外界的特征和向上的权重(认知权重)产生每一层的抽象表示(结点状态),并且使用梯度下降修改层间的下行权重(生成权重)。

也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。2)sleep阶段:生成过程,通过顶层表示(醒时学得的概念)和向下权重,生成底层的状态,同时修改层间向上的权重。

也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。

deep learning训练过程具体如下:1)使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练):采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是feature learning过程):具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;2)自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调):基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deep learning效果好很大程度上归功于第一步的feature learning过程。

深度学习的课程可以在哪看到?

深度学习就是企图把中间的这个“黑箱”打开:目标是什么?根据什么确定了这样的目标?为了达到这个目标我要设计什么样的活动?

01深度学习的必要性改革开放40年,基础教育研究与实践的最大成就之一,就是树立了“学生是教育主体”的观念。但是,在课堂教学中,学生并未真正成为主体,大多数课堂教学也没有发生根本变化。为什么?

因为大多数教学改革尚未抓住教学的根本,对课堂教学的研究还只停留在文本上、观念上,没有落到实际行动中。开展深度学习的研究与实践正是把握教学本质的一种积极努力,是我国课程教学改革走向深入的必需。

当前,智能机器尤其是智能化穿戴设备的大量出现,部分传统职业已被替代,甚至有人认为教师和教学也可能被替代而消失。在这样的情形下,我们不得不思考:在智能化时代,真的不需要教学了吗?真的不需要教师了吗?

如果把教学仅仅看作是知识的刻板传递的话,那么,智能技术完全可以胜任,教学和教师完全可以被智能机器替代了。

借用马云(阿里巴巴集团创始人)的话说,在一个把机器变成人的社会,如果教学还在把人变成机器,是没有出路的。蒂姆·库克(苹果公司现任CEO)说:“我不担心机器会像人一样思考,我担心的是人会像机器一样思考。

”正是由于智能机器的出现和挑战,我们必须严肃思考:教学究竟应该是怎么样的?教学存在的意义和价值究竟是什么?事实上,教学的价值和意义一直都是培养人,但智能时代让它的意义和价值更加鲜明,不能再被忽视。

因此,当机器已不只以存储为功能,而开始像人一样思考的时候,我们清醒地意识到:教学绝不是知识传递,甚至知识学习本身也只是培养人的手段,教学的最终目的是实现学生的全面发展。

因此,帮助学生通过知识学习、在知识学习中形成核心素养,在知识学习中成长和发展,成为教学的首要任务。02深度学习的内涵什么是深度学习?可以从两个层面来理解。

一个是初级层面,是针对教学实践领域的弊端提出来的,是针砭时弊的一种提法。深度学习是针对实践中存在大量的机械学习、死记硬背、知其然而不知其所以然的浅层学习现象而提出的。这里的“深度”是指学生的深度学习。

我们并不强求教师必须采用某种固定的模式或方法,而是强调,教师要用恰当的方法去引发、促进、提升学生的深度学习。在这个意义上,深度学习是浅层学习的反面,是针砭时弊的。但是,深度学习绝不只停留于这个层面。

深度学习还有另一层面的理解,即高级的层面:深度学习并不只是为了促进学生高级认知和高阶思维,而是指向立德树人,指向发展核心素养,指向培养全面发展的人。

因此,深度学习强调动心用情,强调与人的价值观培养联系在一起。每个教师都应该想:我今天的教学会给学生造成什么样的影响?能够让他有善良、正直的品性吗?会让他热爱学习吗?会影响他对未来的积极期待吗?

……总之,深度学习的目的是要培养能够“百尺竿头更进一步”、能够创造美好生活的人,是生活在社会历史进行中的、具体的人,而非抽象意义上的有高级认知和高阶思维的偶然个体。

综上,我们所说的深度学习,必须满足以下四个要点:▲ 深度学习是指教学中学生的学习而非一般意义上学习者的自学,因而特别强调教师的重要作用,强调教师对学生学习的引导和帮助。

▲ 深度学习的内容是有挑战性的人类已有认识成果。

也就是说,需要深度加工、深度学习的内容一定是具有挑战性的内容,通常是那些构成一门学科基本结构的基本概念和基本原理,而事实性的、技能性的知识通常并不需要深度学习。

在这个意义上,深度学习的过程也是帮助学生判断和建构学科基本结构的过程。

▲ 深度学习是学生感知觉、思维、情感、意志、价值观全面参与、全身心投入的活动,是作为学习活动主体的社会活动,而非抽象个体的心理活动。

▲ 深度学习的目的指向具体的、社会的人的全面发展,是形成学生核心素养的基本途径。

根据这四个要点,我们给深度学习下了一个界定:“所谓深度学习,就是指在教师引领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程。

在这个过程中,学生掌握学科的核心知识,理解学习的过程,把握学科的本质及思想方法,形成积极的内在学习动机、高级的社会性情感、积极的态度、正确的价值观,成为既具独立性、批判性、创造性又有合作精神、基础扎实的优秀的学习者,成为未来社会历史实践的主人”。

03课堂教学如何实现深度学习?1实现经验与知识的相互转化“经验”与“知识”常被看作是彼此对立的一对概念,事实上却有着紧密关联。深度学习倡导通过“联想与结构”的活动将二者进行关联、转化。

简单来说,“联想与结构”是指学生通过联想,回想已有的经验,使当前学习内容与已有的经验建立内在关联,并实现结构化;而结构化了的知识(与经验)在下一个学习活动中才能被联想、调用。

在这个意义上,“联想与结构”所要处理的正是知识与经验的相互转化,即经验支持知识的学习,知识学习要结构化、内化为个人的经验。

也就是说,学生个体经验与人类历史知识不是对立、矛盾的,而是相互关联的,教师要找到它们的关联处、契合处,通过引导学生主动“联想与结构”的活动,让学生的经验凸显意义,让外在于学生的知识与学生建立起生命联系,使经验与知识相互滋养,成为学生自觉发展的营养。

2让学生成为真正的教学主体究竟如何才能让学生真正成为教学主体呢?我们提出了“两次倒转”的学习机制。为什么要提“两次倒转”?

因为,相对于人类最初发现知识的过程而言,从根本上说,教学是一个“倒过来”的活动,即学生不必经历实践探索和试误的过程,而可以直接把人类已有的认识成果作为认识对象、学习内容,这正是人类能够持续进步的根本原因,是人类的伟大创举。

但是,如果把教学的根本性质(即“倒过来”)作为教学过程本身,那就可能造成教学中的灌输,强调反复记忆和“刷题”,无视学生与知识的心理距离和能力水平,致使学生产生厌学情绪。

因此,在强调教学的根本性质是“倒过来”的基础上,要关注学生的能力水平、心理感受,要将“倒过来”的过程重新“倒回去”,即:通过教师的引导和帮助,学生能够主动去“经历”知识发现、发展(当然不是真正地经历,而是模拟地、简约地去经历)的过程。

在这个过程中,知识真正成为学生能够观察、思考、探索、操作的对象,成为学生活动的客体,学生成为了教学的主体。

3帮助学生通过深度加工把握知识本质学生活动与体验的任务,主要不是把握那些无内在关联的碎片性的、事实性的信息,而是要把握有内在关联的原理性知识,把握人类历史实践的精华。

因此,学生的学习主要不是记忆大量的事实,而是要通过主动活动去把握知识的本质。知识的本质需要通过典型的变式来把握,即通过典型的深度活动来加工学习对象,从变式中把握本质。

同样,一旦把握了知识的本质便能够辨别所有的变式,举一反三、闻一知十。“一”就是本质、本原、原理,基本概念。当然,本质与变式需要学生对学习对象进行深度加工,这是深度学习要特别重视的地方。

4在教学活动中模拟社会实践一般而言,学生是否能把所学知识应用到别的情境中是验证教学效果的常用手段,即学生能否迁移、能否应用。

深度学习也强调迁移和应用,但我们不仅强调学生能把知识应用到新的情境中,更强调迁移与应用的教育价值。

我们把“迁移与应用”看作学生在学校阶段,即在学生正式进入社会历史实践过程之前,能够在教学情境中模拟体会社会实践的“真实过程”,形成积极的情感态度价值观,因而我们强调“迁移与应用”的综合教育价值,既综合运用知识又实现综合育人的价值,而不仅仅是某个学科知识简单的迁移。

它比一般的“迁移与应用”更广阔一些,学生跟社会的联系更强一些。5引导学生对知识的发展过程进行价值评价教学要引导学生对自己所学的知识及知识发现、发展的过程进行价值评价。例如,食物的保鲜与防腐。

过去学这个知识,学生通常要掌握“食物是会腐烂的,想让食物保鲜就要加防腐剂”这个知识点,甚至初步掌握防腐技术。但那仅仅是作为一个知识点、一个技能来掌握的。

深度学习要让学生讨论,是不是所有的食品都可以用防腐剂来保鲜?是不是防腐剂用得越多越好?这就是一种价值伦理的判断。深度学习不仅仅是学知识,还要让学生在学习知识的过程中对所学的知识进行价值判断。

不仅仅是对知识本身,还要对知识发现、发展的过程以及学习知识的过程本身进行价值判断。04深度学习的实践模型图1是深度学习的实践模型。它不是知识单元、内容单元,而是学习单元,是学生学习活动的基本单位。

过去我们的教学知道要学什么,也知道要考什么,但中间的环节,例如学习目标是怎么定的,活动是怎么展开的,我们明确知道的东西很少,所以教学中间的两个环节是“黑箱”。

深度学习就是企图把中间的这个“黑箱”打开:目标是什么?根据什么确定了这样的目标?为了达到这个目标我要设计什么样的活动?图1中的箭头看起来像是单向的,实际上应该有无数条线条,表现不断循环往复的过程。

图1中的四个形式要素跟前面讲的理论框架是内在一致的,单元学习主题实际上就是“联想与结构”的结构化的部分。单元学习目标,就是要把握知识的本质。单元学习活动是活动与体验、迁移与应用的一个部分。

因此,单元学习主题,就是从“知识单元”到“学习单元”,立足学生的学习与发展,以大概念的方式组织“学习”单元,在学科逻辑中体现较为丰富、立体的活动性和开放性。

过去的学科通常都是封闭的,现在要把它变成一个开放的、未完成的东西,有了未完成性和开放性,为学生提供探究的空间,有重新发现的空间。

单元学习目标是从学生的成长、发展来确定和表述;要体现学科育人价值,彰显学科核心素养及其水平进阶。单元学习活动要注重几个特性。首先是规划性和整体性(整体设计),体现着深度学习强调整体把握的特点。

其次是实践性和多样性,这里强调的是学生主动活动的多样性。再次是综合性和开放性,即知识的综合运用、开放性探索。最后是逻辑性和群体性,主要指学科的逻辑线索以及学生之间的合作互助。

持续性评价的目的在于了解学生学习目标达成情况、调控学习过程、为教学改进服务。持续性评价形式多样,主要为形成性评价,是学生学习的重要激励手段。实施持续性评价要预先制定详细的评价方案。

总之,对深度学习的研究,是一个对教学规律持续不断的、开放的研究过程,是对以往一切优秀教学实践的总结、提炼、提升和再命名,需要更多的教师和学者共同的努力和探索。

 

你可能感兴趣的:(深度神经网络训练)