提到分布式算法,就不得不提 Paxos 算法,在过去几十年里,它基本上是分布式共识的代名词,因为当前最常用的一批共识算法都是基于它改进的。比如,Fast Paxos 算法、Cheap Paxos 算法、Raft 算法等等。而很多同学都会在准确和系统理解 Paxos 算法上踩坑,比如,只知道它可以用来达成共识,但不知道它是如何达成共识的。
这其实侧面说明了 Paxos 算法有一定的难度,可分布式算法本身就很复杂,Paxos 算法自然也不会例外,当然了,除了这一点,还跟兰伯特有关。
兰伯特提出的 Paxos 算法包含 2 个部分:
可因为兰伯特提到的 Multi-Paxos 思想,缺少代码实现的必要细节(比如怎么选举领导者),所以在理解上比较难。
为了让你理解 Paxos 算法,接下来我会用 2 节课的时间,分别以 Basic Paxos 和 Multi-Paxos 为核心,带你了解 Basic Paxos 如何达成共识,以及针对 Basic Paxos 的局限性 Multi-Paxos 又是如何改进的。今天咱们先来聊聊 Basic Paxos。
在我看来,Basic Paxos 是 Multi-Paxos 思想的核心,说白了,Multi-Paxos 就是多执行几次 Basic Paxos。所以掌握它之后,你能更好地理解后几讲基于 Multi-Paxos 思想的共识算法(比如 Raft 算法),还能掌握分布式共识算法的最核心内容,当现在的算法不能满足业务需求,进行权衡折中,设计自己的算法。
假设我们要实现一个分布式集群,这个集群是由节点 A、B、C 组成,提供只读 KV 存储服务。你应该知道,创建只读变量的时候,必须要对它进行赋值,而且这个值后续没办法修改。因此一个节点创建只读变量后就不能再修改它了,所以所有节点必须要先对只读变量的值达成共识,然后所有节点再一起创建这个只读变量。
那么,当有多个客户端(比如客户端 1、2)访问这个系统,试图创建同一个只读变量(比如 X),客户端 1 试图创建值为 3 的 X,客户端 2 试图创建值为 7 的 X,这样要如何达成共识,实现各节点上 X 值的一致呢?带着这个问题,我们进入今天的学习。
在一些经典的算法中,你会看到一些既形象又独有的概念(比如二阶段提交协议中的协调者),Basic Paxos 算法也不例外。为了帮助人们更好地理解 Basic Paxos 算法,兰伯特在讲解时,也使用了一些独有而且比较重要的概念,提案、准备(Prepare)请求、接受(Accept)请求、角色等等,其中最重要的就是“角色”。因为角色是对 Basic Paxos 中最核心的三个功能的抽象,比如,由接受者(Acceptor)对提议的值进行投票,并存储接受的值。
在 Basic Paxos 中,有提议者(Proposer)、接受者(Acceptor)、学习者(Learner)三种角色,他们之间的关系如下:
看着是不是有些复杂,其实并不难理解:
讲到这儿,你可能会有疑惑:前面不是说接收客户端请求的节点是提议者吗?这里怎么又是接受者呢?这是因为一个节点(或进程)可以身兼多个角色。想象一下,一个 3 节点的集群,1 个节点收到了请求,那么该节点将作为提议者发起二阶段提交,然后这个节点和另外 2 个节点一起作为接受者进行共识协商,就像下图的样子:
其实,这三种角色,在本质上代表的是三种功能:
因为一个完整的算法过程是由这三种角色对应的功能组成的,所以理解这三种角色,是你理解 Basic Paxos 如何就提议的值达成共识的基础。那么接下来,咱们看看如何使用 Basic Paxos 达成共识,解决开篇提到的那道思考题。
想象这样一个场景,现在疫情这么严重,每个村的路都封得差不多了,就你的村委会不作为,迟迟没有什么防疫的措施。你决定给村委会提交个提案,提一些防疫的建议,除了建议之外,为了和其他村民的提案做区分,你的提案还得包含一个提案编号,来起到唯一标识的作用。
与你的做法类似,在 Basic Paxos 中,兰伯特也使用提案代表一个提议。不过在提案中,除了提案编号,还包含了提议值。为了方便演示,我使用[n, v]表示一个提案,其中 n 为提案编号,v 为提议值。
我想强调一下,整个共识协商是分 2 个阶段进行的(也就是我在 03 讲提到的二阶段提交)。那么具体要如何协商呢?
我们假设客户端 1 的提案编号为 1,客户端 2 的提案编号为 5,并假设节点 A、B 先收到来自客户端 1 的准备请求,节点 C 先收到来自客户端 2 的准备请求。
先来看第一个阶段,首先客户端 1、2 作为提议者,分别向所有接受者发送包含提案编号的准备请求:
你要注意,在准备请求中是不需要指定提议的值的,只需要携带提案编号就可以了,这是很多同学容易产生误解的地方。
接着,当节点 A、B 收到提案编号为 1 的准备请求,节点 C 收到提案编号为 5 的准备请求后,将进行这样的处理:
另外,当节点 A、B 收到提案编号为 5 的准备请求,和节点 C 收到提案编号为 1 的准备请求的时候,将进行这样的处理过程:
第二个阶段也就是接受阶段,首先客户端 1、2 在收到大多数节点的准备响应之后,会分别发送接受请求:
当三个节点收到 2 个客户端的接受请求时,会进行这样的处理:
讲到这儿我想补充一下,如果集群中有学习者,当接受者通过了一个提案时,就通知给所有的学习者。当学习者发现大多数的接受者都通过了某个提案,那么它也通过该提案,接受该提案的值。
通过上面的演示过程,你可以看到,最终各节点就 X 的值达成了共识。那么在这里我还想强调一下,Basic Paxos 的容错能力,源自“大多数”的约定,你可以这么理解:当少于一半的节点出现故障的时候,共识协商仍然在正常工作。
本节课我主要带你了解了 Basic Paxos 的原理和一些特点,我希望你明确这样几个重点。
参考: