- 两台pc如何高速度传输大文件
费城之鹰
其他两台电脑高速传输文件局域网不适用U盘传输资料网线直连两台电脑传资料
今天笔记本跑一个大一点的项目,8G的内存直接100%,i5的CPU直接75%并且在超频工作了,原本1.6Ghz的频率直接飙到了3.8Ghz,由于项目性质原因,采用的是公司配的笔记本,但是年初采购的联想E480,还在三包时间段内,公司不允许拆机增加内存,只能换一台新的台式机,听起来挺爽,有新设备,但是办公区域不准使用U盘这一类的存储设备,这就蛋疼了,大半年了项目代码,资料全在这个不够用的笔记本里,问
- Mac 电脑crontab执行定时任务【Python 实战】
qifengle2014
LinuxDockerJavaPython技术分享合集macospython开发语言
1、crontab-e编辑定时任务列表crontab-e查看当前定时任务列表,长按i编辑,编辑完之后按esc退出编辑,然后输入:wq保存并提出。如下:(base)charles@zl~%crontab-e5815***/Library/Frameworks/Python.framework/Versions/3.8/bin/python3/Users/charles/Documents/first
- Python核心编程-语法范式与高阶应用实践
Stara-AI
Python装饰器内存管理机制PEP8工程规范
一、Python基础语法、变量、列表、字典等运用1.运行python程序的两种方式1.交互式即时得到程序的运行结果2.脚本方式把程序写到文件里(约定俗称文件名后缀为.py),然后用python解释器解释执行其中的内容2.python程序运行的三个步骤python3.8C:\a\b\c.py1.先启动python3.8解释器,此时相当于启动了一个文本编辑器2.解释器会发送系统调用,把c.py的内容从
- 【零基础学AI】第36讲:GPT模型原理
1989
0基础学AI人工智能gptlstmrnnYOLO目标检测
本节课你将学到理解GPT模型的基本原理掌握Transformer解码器的工作机制实现一个简单的文本生成应用开始之前环境要求Python3.8+安装包:pipinstalltransformerstorch硬件:CPU即可运行(GPU可加速)前置知识了解基本的神经网络概念(第23讲内容)熟悉Python编程基础核心概念什么是GPT?GPT(GenerativePre-trainedTransform
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- Scrapy分布式爬虫进阶:动态代理与并发优化实战
Kelaru
pythonprojectscrapy分布式爬虫python
写在前面。。。继“动态网页”“登录网站”“经验总结”“分布式爬虫”后,本篇献上Scrapy-Redis进阶实战,基于QuotestoScrape,聚焦动态代理池和并发优化,代码简洁,经验点燃智慧,适合新手到老兵。准备工作1.环境配置Python:3.8+(推荐3.10)。依赖安装:pipinstallscrapy==2.11.2scrapy-redis==0.7.4redis==5.0.8requ
- Python爬虫实战:爬取ETF基金持仓变化
Python爬虫项目
python爬虫开发语言信息可视化数据分析
1.项目背景ETF(Exchange-TradedFund,交易型开放式指数基金)作为一种在交易所上市交易的基金,其持仓信息对于投资者具有重要参考价值。了解ETF的持仓变化,可以帮助投资者判断市场趋势和资金流向。本文将通过Python爬虫技术,自动化地获取ETF基金的持仓变化数据,进行存储和分析。2.技术选型与环境准备2.1技术选型编程语言:Python3.8+爬虫框架:Scrapy数据解析:Be
- Python 包管理工具(uv)
cliffordl
pythonpythonuv开发语言
Python虚拟环境(conda)Python虚拟环境(venv)Python包管理工具(uv)文章目录1.uv的特点2.安装uv2.1.使用官方推荐方式2.2.使用pip安装(Python>=3.8)2.3.使用conda/mamba安装3.基本使用方法3.1.初始化项目并创建虚拟环境3.1.1.CMD运行结果3.1.2.VScode运行结果3.2.安装依赖3.3.生成依赖文件3.4.使用pyp
- AttributeError: module ‘distutils‘ has no attribute ‘version‘
吴闹闹(●'◡'●)
python深度学习开发语言
错误:File"/root/miniconda3/envs/vidar/lib/python3.8/sitepackages/torch/utils/tensorboard/__init__.py",line4,inLooseVersion=distutils.version.LooseVersionAttributeError:module'distutils'hasnoattribute've
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- SpringBoot整合SpringCache实现高效缓存管理
quequnlong
springboot缓存后端
前言在现代应用开发中,缓存是提升系统性能的核心技术之一。SpringCache作为Spring生态的缓存抽象层,提供统一的缓存操作接口。本文将通过完整示例演示SpringBoot项目如何整合SpringCache。环境准备JDK17+SpringBoot3.1.0Maven3.8+IDE(IntelliJIDEA/VSCode)整合步骤1.添加依赖org.springframework.boots
- 【零基础学AI】第33讲:强化学习基础 - 游戏AI智能体
1989
0基础学AI人工智能游戏transformer分类深度学习神经网络
本节课你将学到理解强化学习的基本概念和框架掌握Q-learning算法原理使用Python实现贪吃蛇游戏AI训练能够自主玩游戏的智能体开始之前环境要求Python3.8+PyTorch2.0+Gymnasium(原OpenAIGym)NumPyMatplotlib推荐使用JupyterNotebook进行实验前置知识Python基础编程(第1-8讲)基本数学概念(函数、导数)神经网络基础(第23讲
- PyTorch安装总失败?看完这篇保姆级教程,从0到1轻松搞定!
喜欢编程就关注我
pytorch人工智能python
引言:为什么你装不好PyTorch?“CUDA版本不匹配?pip安装超时?conda环境冲突?”新手安装PyTorch的坑比代码bug还多!这篇博客整合CSDN高赞实战技巧,手把手教你绕过10大安装陷阱,附赠代码级验证指南!一、安装前必看:环境检查清单检查项操作方法Python版本python--version(推荐3.8-3.11)CUDA驱动nvidia-smi(仅NVIDIA显卡需要)con
- 解决更新python版本后,虚拟环境不可用的问题
Superstarimage
diffusers编程pythonpython人工智能开发语言
因为安装xformers,需要额外加装triton,而triton需要的python版本(3.10)高于我当前虚拟环境的版本(3.8),因此博主手动提升了当前虚拟环境的版本:condainstallpython=3.10结果应用该虚拟环境时,始终报如下错误:(TrainControlNet)F:\XYX\Documents\SpongeCakeInverse\AITools\the3rdparty
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- PPOCRLabel 环境配置教程
ysh9888
人工智能算法计算机视觉opencv
PPOCRLabel环境配置教程_哔哩哔哩_bilibili1安装conda2新建环境condacreate--nameppocrpython=3.8--channelhttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/condaactivateppocrpipinstall-rrequirements.txt-ihttps://pypi
- 微信聊天记录监听与转发工具
明天过后0122
高效办公微信
以下是基于您需求撰写的《微信聊天记录监听与转发工具需求分析开发文档》:微信聊天记录监听与转发工具需求分析开发文档一、项目概述1.1目标开发基于wxauto的自动化工具,实现:实时监听指定微信聊天窗口(群组/个人)捕获并处理新消息按指定策略转发至目标用户"元宝"确保操作间隔符合10秒限制1.2技术栈核心框架:Python3.8+微信自动化:wxauto_custom(基于wxauto的定制版本)并发
- 在VSCode中搭建ESP32的编译环境详解
承接电子控制项目开发
vscodeide编辑器ESP32环境
在VSCode中搭建ESP32的编译环境,主要可通过两种方式实现:基于乐鑫官方推荐的EspressifIDF插件或使用PlatformIO插件。以下是基于EspressifIDF插件的详细步骤及注意事项:一、环境准备安装必要软件VSCode:从官网下载并安装最新版本12。Python3.8+:建议选择Python3.8或更高版本,安装时需取消勾选“Downloaddebuggingsymbols”
- yolov5/v7/v8/v9/v10环境详细配置教程(Windows+conda+pycharm)
视觉算法er
深度学习环境配置YOLO目标检测人工智能深度学习condapycharm
一、所需环境配置1.1.虚拟环境创建首先,打开AnacondaPrompt命令窗口,创建一个新的虚拟环境,后面的包都在这个环境中安装。创建命令是:我的习惯是使用3.8版本的python,你也可以换成更高版本;condacreate-nyolopython=3.8输入命令后,运行结果如下:输入y即可;1.2.激活虚拟环境安装完成后,即可激活虚拟环境,输入以下命令即可;condaactivateyol
- python := 海象运算符
challenge-linge
itit
参考视频教程:**体系课-Go+Python双语言混合开发盯紧技术先机抓紧高薪机遇**最近在做算法题越来越发现python写法真的挺好用的记下来map(lambdax:sum(x))中lambda代表匿名函数re.findall(r’0+|1+’,s)是正则表达式:=海象运算符转背景:python3.8正式版最近更新了,其中PEP572中的海象运算符获得正式python版本的支持.我看了官网的文档
- python : 海象运算符 :=
愚戏师
python基础与机器学习python前端
海象运算符:=在Python3.8中引入的海象运算符(:=,WalrusOperator)是一个语法特性,允许在表达式内部进行变量赋值。它得名于符号:=形似海象的眼睛和獠牙。这一特性旨在简化代码,减少重复计算,同时提升可读性。核心概念语法:变量:=表达式作用:将表达式的值赋给变量,并返回该值。特点:在条件判断、循环、推导式等场景中直接使用赋值结果。避免重复计算同一表达式,提升代码效率。典型使用场景
- 探索未来科技:Ollama Python 库——Python 与 AI 的无缝对接
尚绮令Imogen
探索未来科技:OllamaPython库——Python与AI的无缝对接项目地址:https://gitcode.com/gh_mirrors/ol/ollama-python在人工智能领域,Python是无可争议的首选语言。而OllamaPythonLibrary正是为了让开发者更加便捷地将Python3.8及以上版本项目与Ollama平台集成,从而解锁更强大的AI功能。这个库以其直观的API设
- 【零基础学AI】第22讲:PyTorch入门 - 动态图计算与图像分类器实战
1989
0基础学AI人工智能pytorchpython机器学习sklearn深度学习
本节课你将学到理解PyTorch的核心概念和优势掌握张量(Tensor)的基本操作学会使用动态计算图构建神经网络实现一个完整的图像分类器项目训练模型并进行预测开始之前环境要求Python3.8+建议使用GPU(可选,CPU也能运行)内存:至少4GB需要安装的包#CPU版本(推荐新手)pipinstalltorchtorchvisionmatplotlibpillow#GPU版本(如果有NVIDIA
- Ubuntu 22.04 修改默认 Python 版本为 Python3 笔记
笑衬人心。
ubuntupython笔记
Ubuntu系统默认使用的是Python2.x作为python命令的映射,而现代开发(如pip、Django、Flask、Scrapy等)大多基于Python3。本笔记将教你如何将默认python命令指向Python3(如Python3.8、3.10)。背景说明在Ubuntu22.04中:系统默认安装了Python2和Python3;运行python命令默认启动的是Python2;运行python
- MySQL函数分类(收藏)
两圆相切
mysql数据库
1.数值处理函数用于数学运算和数值处理包括基本的算术运算、舍入、随机数生成等函数名功能语法示例结果示例版本适用备注ABS()返回数值的绝对值SELECTABS(-5);5所有版本CEIL()/CEILING()返回大于或等于数值的最小整数SELECTCEIL(3.2);4所有版本两个函数功能相同FLOOR()返回小于或等于数值的最大整数SELECTFLOOR(3.8);3所有版本ROUND()对数
- Android 解析手机号码归属地
夏沫琅琊
androidandroid
Android解析手机号码归属地本文主要介绍下android项目中解析手机号码归属地的一种实现方式.1:libphonenumber库https://mvnrepository.com/artifact/com.googlecode.libphonenumber/geocoder/3.8仓库地址.https://github.com/google/libphonenumber/目前是在kotlin
- 新华妙笔:AI智能写作助手,让高效写作触手可及
东风西巷
AI写作android软件需求智能手机
在当今快节奏的时代,无论是职场人士、学生还是创作者,都面临着大量的写作任务。从工作总结、调研报告到公文写作、商业文案,高效且高质量的写作能力成为了提升个人竞争力的关键。然而,写作不仅需要丰富的知识储备和扎实的文字功底,还需要大量的时间和精力去打磨。为了帮助用户更高效地完成写作任务,新华妙笔APP应运而生。它是一款功能强大的AI智能写作助手,依托自然语言处理(NLP)和大数据分析技术,能够快速生成各
- Deep Global Registration 代码环境配置(rtx3090+python3.8+cuda11.1+pytorch1.7+MinkowskiEngine0.5.1)
JPy646
pytorch深度学习神经网络
前言踩过的坑:因为rtx3090最低算力是8.6,似乎不支持过低版本的cuda。试过pytorch1.7.0+cuda11.0,但会报错,由于cuda11.0支持的最高算力达不到rtx最低的要求。但配置pytorch1.8时DGR的代码运行时会报错。对于没有这个烦恼的还是推荐安装python3.6+cuda10.2+pytorch1.6+MinkowskiEngine0.4.3,这个配置无需改动代
- OpenAI API接口使用基础教程
且漫CN
DeepSeekopenaiapiapiopenai
OfficialPython库—OpenAIAPI这是OpenAI官方为Python(支持Python 3.8及以上)提供的RESTAPI客户端,使用现代的httpx库实现同步与异步调用,并内置完整的类型定义([github.com][1])。文档RESTAPI的官方文档请参考platform.openai.com。本库完整API说明可见api.md文件([github.com][1])。安装pi
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不