- 华为OD机考2025B卷 - 停车费用统计 (Java & Python& JS & C++ & C )
算法大师
最新华为OD机试真题华为OD机试真题(Java/JS/Py/C)华为odjavapython华为OD机考2025B卷javascriptc++
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看2025华为od机试2025B卷-华为机考OD2025年B卷题目描述停车场统计当日总收费,包月的车不统计,不包月的车半个小时收一块钱,不满半小时不收钱,如果超过半小时,零头不满半小时按半小时算,每天11:30-13:30时间段不收钱,如果一辆车停车时间超过8小时后不收费(网友回忆,数值不一定为8,正式机考的时候注意一下)。输入
- Elasticsearch(ES)聚合
思静鱼
#elasticsearchelasticsearchjenkins大数据
Elasticsearch(ES)的聚合(Aggregation)功能类似于SQL中的GROUPBY+聚合函数(如COUNT、AVG、SUM),是进行统计分析的核心机制。聚合(Aggregation)概述Elasticsearch的聚合分为三大类:类别说明Metric聚合计算数值(如:count、avg、sum、max、min)Bucket聚合类似于SQL的GROUPBY,把文档分类Pipelin
- PyEcharts教程(010):天猫订单数据可视化项目
文理棵
Python数据分析信息可视化python数据分析
文章目录1、读取数据2、数据处理3、重复值查看4、缺失值查看5、PyEcharts可视化5.1各个省份的订单量5.2时间序列分析5.3每天订单量统计可视化6、数据下载1、读取数据1️⃣读取数据:importpandasaspdfrompyechartsimportoptionsasoptsfrompyecharts.chartsimportMap,Timeline,Bar,Line,Piedata
- ZLG嵌入式笔记 | 工业现场掉电,系统异常如何破解?
ZLG 致远电子
边缘计算ZLG嵌入式开发应用笔记嵌入式硬件
在工业现场,设备常因掉电导致文件系统损坏或数据丢失。本文将介绍如何通过硬件和系统设计优化,解决这一问题,提升设备稳定性。 前言在工业应用现场,不可避免会出现异常掉电或者一些偶发性频繁上下电的情况,这样对系统是有非常大的影响的,特别是写数据过程中发生了掉电,可能会引发下列异常:引起文件系统损坏或者系统异常;数据丢失,带来经济损失。这是非常典型的产品运行过程中有写数据操作,但数据
- Oracle 递归 + Decode + 分组函数实现复杂树形统计进阶(第二课)
AI、少年郎
数据库ORACLE分组求和自动递归树形数据统计
在上篇文章基础上,我们进一步解决层级数据递归汇总问题——让上级部门的统计结果自动包含所有下级部门数据(含多级子部门),并新增请假天数大于3天的统计维度。通过递归CTE、DECODE函数与分组函数的深度结合,实现真正意义上的树形结构数据聚合。一、业务需求升级:层级汇总与新增统计维度核心目标递归汇总:上级部门数据包含所有直属/非直属下级部门数据(如集团总部需汇总技术研发部、产品运营部及其子部门数据)新
- C# VB.NET取字符串中全角字符数量和半角字符数量
专注VB编程开发20年
c#.net开发语言VB.NET字符串
C#VB.NET中Tuple轻量级数据结构和固定长度数组-CSDN博客https://blog.csdn.net/xiaoyao961/article/details/148872196下面提供了三种统计字符串中全角和半角字符数量的方法,并进行了性能对比。性能对比(处理100万次"Hello,世界!123456")方法执行时间(毫秒)相对性能方法三:位运算~150100%方法二:字符遍历~2506
- 基于django+Spark+大数据+爬虫技术的国漫推荐与可视化平台设计和实现(源码+论文+部署讲解等)
阿勇学长
大数据项目实战案例Java精品毕业设计实例Python数据可视化项目案例大数据djangospark国漫推荐与可视化平台毕业设计Java
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- 文本生成新纪元:解锁大模型的企业级应用密码
数字化浪潮席卷各行业的当下,文本生成技术正经历着翻天覆地的变革,这场变革的幕后功臣正是大模型。今天,咱们就来深入探讨大模型在文本生成领域的奥秘,看看它如何赋能企业,又该怎样规避风险,实现价值最大化。技术跃迁:从笨拙规则到智能生成回首往昔,文本生成依靠规则模板与关键字替换,虽能实现基础自动化,却如机械舞者,动作生硬、缺乏灵动。业务稍有变动,规则需全面重构,耗时费力。随着N-gram等统计机器学习方法
- 软件外包:行业现状、挑战与机遇
MicroTeamers
kafka科技数据分析
在数字化浪潮席卷全球的今天,软件外包已成为企业在信息技术领域发展的重要战略选择。软件外包是指企业将软件项目中的部分或全部工作委托给专业的外部软件服务提供商完成的一种业务模式。这种模式在过去几十年间得到了迅猛发展,其背后有着深刻的经济和技术动因。从行业现状来看,全球软件外包市场规模持续扩大。一方面,对于许多企业,尤其是中小型企业而言,自行组建完整的软件开发团队面临着高昂的人力成本、设备成本以及管理成
- 【零基础学AI】 第10讲:线性回归
1989
0基础学AI人工智能线性回归算法python回归numpy开源
本节课你将学到理解线性回归的原理和应用场景掌握最小二乘法的基本思想使用Python构建房价预测模型学会评估回归模型的性能指标开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseabornnumpy前置知识第9讲:机器学习概述基本的Python和数据处理能力核心概念什么是
- 【零基础学AI】第9讲:机器学习概述
1989
0基础学AI人工智能机器学习pythonnumpydevops开源
本节课你将学到理解什么是机器学习,以及它与传统编程的区别掌握监督学习、无监督学习的基本概念使用scikit-learn完成你的第一个机器学习项目构建一个完整的iris花朵分类器开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseaborn前置知识基本的Python语法(
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- 论软件可靠性设计技术的应用
怎么可能-怎么可能
架构系统架构可靠性设计
20250430-作题目随着软件的日益普及,系统中软件成分不断增加,使得系统对软件的依赖越来越强。软件的可靠性对系统可靠性的影响越来越大。而实践证明,保障软件可靠性最有效、最经济、最重要的手段是在软件设计阶段采取措施进行可靠性控制,为此提出了软件可靠性设计的概念。软件可靠性设计就是在常规的软件设计中,应用各种方法和技术,使软件设计在兼顾用户功能和性能需求的同时,全面满足软件的可靠性要求。软件可靠性
- R语言与C语言混合编程:在R语言中调用C语言函数
数据探索
r语言c语言开发语言R语言
R语言与C语言混合编程:在R语言中调用C语言函数介绍:R语言是一种用于统计分析和数据可视化的高级编程语言,而C语言是一种通用的、强大的编程语言。在某些情况下,我们可能需要在R语言中调用C语言函数以提高性能或实现特定的功能。本文将介绍如何在R语言中调用C语言函数的方法,并提供相应的源代码示例。步骤:为了在R语言中调用C语言函数,我们需要执行以下步骤:编写C语言函数:首先,我们需要编写我们想要在R中调
- 倾向得分匹配的stata命令_R语言系列1:倾向得分匹配
weixin_39995108
倾向得分匹配的stata命令
1PSM简介倾向评分匹配(PropensityScoreMatching,简称PSM)是一种统计学方法,用于处理观察研究(ObservationalStudy)的数据。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confoundingvariable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。这种方法最早由PaulRosen
- R语言倾向性匹配得分(PSM)分析
后端工程实践
r语言java开发语言R语言
R语言倾向性匹配得分(PSM)分析倾向性匹配得分(PropensityScoreMatching,PSM)是一种常用的统计方法,用于处理观察研究中的选择性偏倚。它通过建立一个倾向性得分模型,将受试者分为处理组和对照组,以实现类似于随机对照试验的效果。本文将介绍如何使用R语言进行倾向性匹配得分分析,并提供相应的源代码。导入所需的R包在进行PSM分析之前,首先需要导入所需的R包。常用的包包括Match
- Python爬虫实战:研究MarkupSafe库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言MarkupSafe
1.引言1.1研究背景与意义随着互联网数据量的爆炸式增长,网页内容自动提取与分析技术在信息检索、舆情监控、数据挖掘等领域的需求日益凸显。网络爬虫作为获取网页内容的核心工具,能够自动化采集互联网信息。然而,直接渲染爬取的网页内容存在安全隐患,特别是跨站脚本攻击(XSS)风险。攻击者可能通过注入恶意脚本窃取用户信息或破坏网站功能。MarkupSafe作为Python的安全字符串处理库,能够有效处理不可
- Python爬虫实战:研究sanitize库相关技术
ylfhpy
爬虫项目实战python爬虫网络开发语言安全sanitize
1.引言1.1研究背景与意义在当今数字化时代,互联网已成为人们获取信息、交流互动的重要平台。随着Web2.0技术的发展,用户生成内容(UGC)、社交媒体嵌入、第三方插件等功能极大丰富了网页的内容和交互性,但也带来了严峻的安全挑战。根据Web应用安全联盟(WAS)的统计数据,2025年全球范围内因网页安全漏洞导致的数据泄露事件超过15万起,造成的经济损失高达250亿美元。其中,跨站脚本攻击(XSS)
- Python爬虫实战:研究xmltodict库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言xmltodict
1.引言1.1研究背景与意义气象数据在农业生产、交通规划、灾害预警等多个领域具有重要应用价值。传统的气象数据获取方式主要依赖于气象部门发布的统计信息,存在更新不及时、数据维度有限等问题。随着互联网技术的发展,气象网站提供了丰富的实时气象数据,但这些数据通常以HTML、XML等非结构化或半结构化形式存在,难以直接利用。因此,开发高效的数据采集与解析系统具有重要的现实意义。1.2国内外研究现状网络爬虫
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- Python爬虫实战:研究difflib库相关技术
ylfhpy
爬虫项目实战python爬虫easyui开发语言前端difflib
1.引言1.1研究背景与意义在信息爆炸的数字时代,互联网每天产生海量文本内容。据统计,全球新闻网站日均发布文章超过300万篇,社交媒体平台产生的文本信息量更以亿级单位增长。这种信息过载带来了内容同质化、抄袭剽窃等问题,给新闻媒体行业、学术研究领域和搜索引擎优化等带来了挑战。文本相似度分析作为自然语言处理的重要分支,能够有效识别内容间的相似程度,具有重要的应用价值:新闻媒体行业:通过检测新闻抄袭和重
- 跨区域智能电网负荷预测:基于 PaddleFL 的创新探索
暮雨哀尘
人工智能智能电网AIGCPaddleFL数据库python可视化
跨区域智能电网负荷预测:基于PaddleFL的创新探索摘要:本文聚焦跨区域智能电网负荷预测,提出基于PaddleFL框架的联邦学习方法,整合多地区智能电网数据,实现数据隐私保护下的高精度预测,为电网调度优化提供依据,推动智能电网发展。一、引言在当今社会,电力作为经济发展的命脉,其稳定供应对于保障社会生活的正常运转和生产的持续进行具有不可替代的重要性。而智能电网作为现代电力系统的重要发展方向,通过集
- 机器学习在智能供应链中的应用:需求预测与库存优化
Blossom.118
机器学习与人工智能机器学习人工智能机器人深度学习python神经网络sklearn
在当今全球化的商业环境中,供应链管理的效率和灵活性对于企业的竞争力至关重要。智能供应链通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从原材料采购到产品交付的全流程优化。机器学习技术在智能供应链中的应用尤为突出,尤其是在需求预测和库存优化方面。本文将探讨机器学习在智能供应链中的应用,并分析其带来的机遇和挑战。一、智能供应链中的需求预测准确的需求预测是供应链管理的核心。需求预测
- 面向隐私保护的机器学习:联邦学习技术解析与应用
Blossom.118
机器学习与人工智能机器学习人工智能深度学习tensorflowpython神经网络cnn
在当今数字化时代,数据隐私和安全问题日益受到关注。随着《数据安全法》《个人信息保护法》等法律法规的实施,企业和机构在数据处理和分析过程中面临着越来越严格的合规要求。然而,机器学习模型的训练和优化往往需要大量的数据支持,这就产生了一个矛盾:如何在保护数据隐私的前提下,充分利用数据的价值进行机器学习模型的训练和优化?联邦学习(FederatedLearning)作为一种新兴的隐私保护技术,为解决这一问
- C++数值算法深度解析:accumulate与max_element
景彡先生
C++进阶c++算法服务器
在C++标准库中,数值算法(NumericAlgorithms)提供了高效处理数值数据的工具。本文将深入解析两个核心数值算法——accumulate(累加求和)与max_element(最大值查找)的底层原理、核心特性及最佳实践,帮助开发者掌握这些“数据统计利器”的正确使用方式。一、accumulate:通用累加器1.1底层原理与实现迭代累加:对[first,last)区间内的元素执行累积操作,初
- AI驱动的智能电网:平衡供需提高效率
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
智能电网,AI,机器学习,预测模型,优化算法,供需平衡,能源效率1.背景介绍随着全球能源需求的不断增长和可再生能源的快速发展,传统电网面临着越来越多的挑战。传统的电网结构是集中式供电,难以适应分布式能源的接入和负荷需求的波动性。智能电网应运而生,它利用先进的通信技术、传感器网络和数据分析技术,实现电网的自动化、智能化和可视化,从而提高电网的可靠性、效率和安全性。人工智能(AI)作为一种新兴技术,在
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- 数据分析案例-全球表面温度数据可视化与统计分析
艾派森
数据分析信息可视化python数据分析数据挖掘
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri