HDL系列第一弹:Fsm serialdata

题目如下:

Now that you have a finite state machine that can identify when bytes are correctly received in a serial bitstream, add a datapath that will output the correctly-received data byte. out_byte needs to be valid when done is 1, and is don't-care otherwise.

Note that the serial protocol sends the least significant bit first.

Some timing diagrams

Error-free:

HDL系列第一弹:Fsm serialdata_第1张图片

一, 最初的思路代码如下:

module top_module(
    input clk,
    input in,
    input reset,    // Synchronous reset
    output [7:0] out_byte,
    output done
); //

    // Use FSM from Fsm_serial
    
    parameter start=0,s1=1,s2=2,s3=3,s4=4,s5=5,s6=6,s7=7,s8=8,fin=9,wai=10,idle=11;
    
    reg[3:0] state,next;
    
    wire [7:0] temp;
    
    always @(*)
        begin
            case(state)
                start:next = s1;
                s1:next = s2;
                s2:next = s3;
                s3:next = s4;
                s4:next = s5;
                s5:next = s6;
                s6:next = s7;
                s7:next = s8;
                s8:next = in?fin:wai;
                fin:next = in?idle:start;
                wai:next = in?idle:wai;
                idle:next = in?idle:start;
                default:next = 'x;
            endcase
        end
    
    always@(posedge clk)
        begin
            if(reset)
                state <= idle;
            else
                state <= next;
            
        end
    
    assign done = (state == fin);
                

    // New: Datapath to latch input bits.
  
    always @(posedge clk)
        begin
            case(next)
                s1:temp[0] <= in;
                s2:temp[1] <= in;
                s3:temp[2] <= in;
                s4:temp[3] <= in;
                s5:temp[4] <= in;
                s6:temp[5] <= in;
                s7:temp[6] <= in;
                s8:temp[7] <= in;
                default:temp <= temp;
            endcase
        end
       
    
    assign out_byte = done?temp:0;
                

endmodule

二,关于 Datapath to latch input bits.网站上给出了提示:The serial bitstream needs to be shifted in one bit at a time, then read out in parallel.

所以考虑采用移位寄存器替代数据输出的case语句,改动后代码如下:

module top_module(
    input clk,
    input in,
    input reset,    // Synchronous reset
    output [7:0] out_byte,
    output done
); //

    // Use FSM from Fsm_serial
    
    parameter start=0,s1=1,s2=2,s3=3,s4=4,s5=5,s6=6,s7=7,s8=8,fin=9,wai=10,idle=11;
    
    reg[3:0] state,next;
    
    wire [8:0] temp;
    wire [7:0] finally;
  
    
    always @(*)
        begin
            case(state)
                start:next = s1;
                s1:next = s2;
                s2:next = s3;
                s3:next = s4;
                s4:next = s5;
                s5:next = s6;
                s6:next = s7;
                s7:next = s8;
                s8:next = in?fin:wai;
                fin:next = in?idle:start;
                wai:next = in?idle:wai;
                idle:next = in?idle:start;
                default:next = 'x;
            endcase
        end
    
    always@(posedge clk)
        begin
            if(reset)
                state <= idle;
            else
                state <= next;
        end
    
    assign done = (state == fin);
                

    // New: Datapath to latch input bits.
    
    dflipflop dff0[8:0](.clk(clk),.d({temp[7:0],in}),.q(temp[8:0]));
       
    assign finally = {temp[1],temp[2],temp[3],temp[4],temp[5],temp[6],temp[7],temp[8]};
    assign out_byte = done?finally:0;
                

endmodule

module dflipflop(input clk,d,output q);
    always@(posedge clk)
        q <= d;
endmodule

注意两点:

a.串行协议先发送最低有效位,故并行输出的结果temp[8:1]要进行反转;

b.关于为什么8位数据但是使用了9位寄存器?

        因为满足done为1时输出数据,此时状态并不是s8,最低一位寄存器输出的并不是最后一位数据。

三,在前两者基础上增加了计数器用来计数已接收的数据位数,简化了状态数目。

module top_module(
    input clk,
    input in,
    input reset,    // Synchronous reset
    output [7:0] out_byte,
    output done
); //

    // Use FSM from Fsm_serial
    
    parameter stop=0,data=1,wai=2,idle=3;
    
    reg[1:0] state,next;
    
    wire [8:0] temp;
    wire [7:0] finally;
  
    reg[3:0] count;
    always @(*)
        begin
            case(state)
                data:next = (count >= 4'd8)? (in?stop:wai):data;
                stop:next = in?idle:data;
                wai:next = in?idle:wai;
                idle:next = in?idle:data;
                default:next = 'x;
            endcase
        end
    
    always@(posedge clk)
        begin
            if(reset)
                state <= idle;
            else
                begin
                state <= next;
                    if(state == data)
                        count <= count + 1;
                    else count <= 0;
                end
        end
    
    assign done = (state == stop);
                

    // New: Datapath to latch input bits.
    
    dflipflop dff0[8:0](.clk(clk),.d({temp[7:0],in}),.q(temp[8:0]));
       
    assign finally = {temp[1],temp[2],temp[3],temp[4],temp[5],temp[6],temp[7],temp[8]};
    assign out_byte = done?finally:0;
                

endmodule

module dflipflop(input clk,d,output q);
    always@(posedge clk)
        q <= d;
endmodule

你可能感兴趣的:(HDL系列,fpga开发)