- 基于matlab的帧间差法进行视频目标检测系统
挂科边缘
MATLAB项目实战matlab人工智能计算机视觉
文章目录前言一、理论基础1.帧间差分法2.背景差分法3.光流法二、程序实现总结源码下载前言运动目标自动检测是对运动目标进行检测、提取、识别和跟踪的技术。基于视频序列的运动目标检测,一直以来都是机器视觉、智能监控系统、视频跟踪系统等领域的研究重点,是整个计算机视觉的研究难点之一。运动目标检测的结果正确性对后续的图像处理、图像理解等工作的顺利开展具有决定性的作用,所以能否将运动物体从视频序列中准确地检
- 计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
全栈你个大西瓜
人工智能计算机视觉YOLO目标跟踪人工智能数据标注目标检测COCO
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 基于特征提取的方法实现对心室视频的追踪
阿蛋会代码
音视频python开发语言opencv目标检测计算机视觉
一、特征提取的方法本代码实现了一套基于计算机视觉的心脏运动定量分析系统,通过特征点追踪技术对超声心动图视频进行动态解析。核心技术采用ORB(OrientedFASTandRotatedBRIEF)特征检测算法,在每帧图像中提取具有旋转不变性的显著斑点特征,构建包含位置和方向信息的特征描述子。通过暴力匹配器(BFMatcher)进行跨帧特征点匹配,结合汉明距离阈值筛选出可信度高的空间对应点对。系统以
- 【openCV-66】内参矩阵和外参矩阵
华东算法王
华东算法王-opencvopencv矩阵人工智能
外参矩阵与内参矩阵在计算机视觉、相机标定和三维重建等领域,内参矩阵和外参矩阵是描述相机如何将三维世界映射到二维图像的重要工具。它们分别描述了相机的内部特性和外部位置,是相机标定的核心组成部分。1.内参矩阵(IntrinsicMatrix)内参矩阵描述了相机内部的几何特性,主要涉及焦距、光心和像素的比例等参数。它通常是一个3x3的矩阵,用来将相机的归一化坐标系转换为像素坐标系。1.1内参矩阵的组成内
- 深度学习批次数据处理的理解
_DCG_
计算机视觉深度学习人工智能
基础介绍在计算机视觉深度学习网络中,在训练阶段数据输入通常是一个批次,即不是一次输入单张图片,而是一次性输入多张图片,而神经网络的结构内部一次只能处理一张图片,这时候很自然就会考虑为什么要这样的输入?神经网络是如何处理多个数据的,下面从硬件架构的角度去分析处理。GPU硬件架构GPU的硬件架构设计是批处理能够高效运行的关键原因之一。GPU现阶段一般采用SIMT架构,它的特点如下:SIMT(Singl
- 【NLP算法面经】腾讯、头条算法岗详细面经(★附面题整理★)
青松ᵃⁱ
NLP百面百过自然语言处理算法人工智能
【NLP算法面经】腾讯、头条算法岗详细面经(★附面题整理★)嗨,你好,我是青松!自小刺头深草里,而今渐觉出蓬蒿。NLPGithub项目推荐:【AI藏经阁】:https://gitee.com/fasterai/ai-e-book介绍:该仓库主要分享了数百本AI领域电子书【AI算法面经】:fasterai/nlp-interview-handbook#面经介绍:该仓库一网打尽互联网大厂NLP算法面经
- 无人机定点运输技术!
云卓SKYDROID
无人机云卓科技科普高科技
核心要点定位与导航GPS/北斗定位:依赖卫星系统实现高精度定位。视觉导航:通过摄像头和计算机视觉技术识别环境。惯性导航:利用加速度计和陀螺仪进行位置推算。路径规划避障算法:实时检测并避开障碍物。动态路径调整:根据环境和任务需求实时优化路径。通信系统实时通信:确保无人机与控制中心保持稳定连接。数据加密:保障通信安全,防止干扰或劫持。负载与续航电池技术:提升续航能力。负载能力:优化设计以承载更多货物。
- 计算机视觉实战|Mask2Former实战:轻松掌握全景分割、实例分割与语义分割
紫雾凌寒
AI炼金厂#计算机视觉计算机视觉python深度学习mask2formertransformerpytorch
一、引言上一篇文章《计算机视觉|Mask2Former:开启实例分割新范式》,我们学习了Mask2Former的框架原理、优缺点以及应用领域。今天要带大家一起探索一个强大的图像分割工具——Mask2Former。作为一名技术博主,我的目标是让复杂的概念变得简单易懂,即使你是刚入门的小白,也能通过这篇文章学会使用Mask2Former进行全景分割、实例分割和语义分割。我会用通俗的语言一步步讲解,还会
- 全市场大模型分类及对比分析报告
早退的程序员
分类数据挖掘人工智能
全市场大模型分类及对比分析报告1.引言随着人工智能技术的飞速发展,大模型(LargeModels)已成为推动AI进步的核心力量。大模型凭借其强大的计算能力和海量数据处理能力,在自然语言处理(NLP)、计算机视觉(CV)、语音识别等领域取得了显著成果。本报告将对全市场中几类主要的大模型进行分类和对比分析,探讨其技术特点、应用场景及未来发展趋势。2.大模型分类根据模型架构、训练目标和应用领域,全市场的
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- 使用 yolov8 进行对象检测
算法资料吧!
YOLO
在计算机视觉领域,YOLOv8对象检测确实以其超高的准确性和速度而脱颖而出。它是YOLO系列的最新版本,以能够实时检测物体而闻名。YOLOv8凭借其一流的对象检测将Web应用程序、API和图像分析提升到一个新的水平。在本文中,我们将了解如何利用yolov8进行对象检测。YOLO概述YOLO(YouOnlyLookOnce)是一种改变游戏规则的对象检测算法,于2015年问世,以其一次闪电般快速处理整
- OpenAI: 人工智能领域的领军企业
2401_87458718
人工智能
OpenAI简介OpenAI是一家位于美国旧金山的人工智能研究实验室,成立于2015年。作为人工智能领域的领军企业,OpenAI致力于开发安全友好的通用人工智能(AGI),其使命是确保人工通用智能能够造福全人类。自成立以来,OpenAI在自然语言处理、计算机视觉、强化学习等多个人工智能领域取得了突破性进展,推出了一系列广受关注的AI模型和产品。OpenAI的发展历程OpenAI由埃隆·马斯克、山姆
- 目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
紫雾凌寒
AI炼金厂#机器学习算法#深度学习深度学习计算机视觉python目标检测YOLOcnn人工智能
一、引言在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的R-CNN到如今的YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。回顾目标检测的发展历程,R-CNN作为第一个将深度
- 图像配准的方法
wangtaohappy
迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择多图像中的一张图像作为参考图像,将其
- 工业机器视觉(一)
头疼的程序员
机器视觉经验分享
文章目录前言机器视觉的定义人与机器的视觉系统机器视觉系统与人的视觉的对比机器视觉技术发展机器视觉与计算机视觉机器视觉的应用工业检测中的应用医学诊断中的应用机器视觉系统工业机器视觉系统的组成关键组成部分工业机器视觉系统开发过程前言最后编辑时间为2024-06-12,阅读本文前请注意最后编辑时间,文章内容可能与目前最新的技术发展情况相去甚远。欢迎各位评论与私信,指出错误或是进行交流等。机器视觉的定义通
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- 使用 Python 和 OpenCV 检测人体皮肤颜色变化计算心率
爱搬砖的程序猿.
pythonopencv开发语言
一、引言心率是反映人体健康状况的重要生理指标之一。传统的心率检测方法通常需要使用专业的医疗设备,如心电图仪、心率带等。而随着计算机视觉技术的发展,我们可以利用摄像头捕捉人体皮肤的颜色变化,通过分析这些变化来计算心率。本文将介绍如何使用Python和OpenCV实现这一功能。二、原理概述当心脏跳动时,血液会在血管中流动,导致皮肤表面的颜色发生微小的变化。这种颜色变化主要体现在皮肤的红色通道上。我们可
- 实现简单的离线人脸识别:C# 结合 OpenCvSharp 和 Emgu CV
墨夶
C#学习资料2c#开发语言
嘿,小伙伴们!今天我们要一起动手实现一个简单的离线人脸识别系统。想象一下,你的应用程序能够识别用户面部并进行身份验证,是不是超酷的?别急,让我们借助OpenCvSharp和EmguCV这两个强大的计算机视觉库,一步一步实现这一目标!引言在现代应用中,人脸识别技术越来越普及,从智能手机解锁到门禁系统,再到安全监控。然而,许多应用场景需要离线处理以保护隐私和减少延迟。今天,我们将使用C#结合OpenC
- [15] 使用Opencv_CUDA 模块实现基本计算机视觉程序
明月醉窗台
CUDA-Opencv计算机视觉opencv人工智能图像处理CUDA
使用Opencv_CUDA模块实现基本计算机视觉程序CUDA提供了出色的接口,发挥GPU的并行计算能力来加速复杂的计算应用程序利用CUDA和Opencv的功能实现计算机视觉应用1.对图像的算术和逻辑运算两个图像相加#include#include"opencv2/opencv.hpp"#include
- 【OpenCV】OpenCV 中各模块及其算子的详细分类
de之梦-御风
OpenCV4Net.net技术opencv分类人工智能
OpenCV的最新版本包含了500多个算子,这些算子覆盖了图像处理、计算机视觉、机器学习、深度学习、视频分析等多个领域。为了方便使用,OpenCV将这些算子分为多个模块,每个模块承担特定的功能。以下是OpenCV中各模块及其算子的详细分类:1.核心模块(Core)功能:提供基础数据结构(如Mat)、数学运算、内存管理、输入输出等基本操作。常用算子:数学运算:cv::add,cv::subtract
- 深度学习(5)-卷积神经网络
yyc_audio
深度学习cnn人工智能
我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为97.8%。虽然这个卷积神经网络很简单,但其精度会超过第2章的密集连接模型。代码8-1给出了一个简单的卷积神经网络。它是conv2D层和MaxPooling2D层的堆叠,你很快就会知道这些层的作用。我们
- 从底层驱动到 OpenCV:深入解析 Linux 摄像头完整技术栈
嵌入式Jerry
嵌入式硬件opencvlinux人工智能计算机视觉开发语言服务器
1.引言在嵌入式Linux(如树莓派、NXPi.MX8MPlus)上,摄像头数据的完整处理链涉及多个层次:底层驱动层:设备树(DeviceTree)、MIPICSI-2协议、V4L2(Video4Linux2)中间件层:libcamera(现代化ISP处理)、GStreamer(多媒体流处理)用户空间应用层:OpenCV(计算机视觉)、AI框架(如TensorFlow、YOLO)本篇文章将深入剖析
- 数字人|通过语音和图片来创建高质量的视频
产品媛Gloria Deng
AI之眼音视频数字人talkingheadAniPortrait框架AI
简介arXiv上的计算机视觉领域论文:AniPortrait:Audio-DrivenSynthesisofPhotorealisticPortraitAnimationAniPortrait:照片级真实感肖像动画的音频驱动合成核心内容围绕一种新的人像动画合成框架展开。研究内容提出AniPortrait框架:用于生成由音频和参考肖像图像驱动的高质量动画。实现方法:分2个阶段实现第一阶段,从音频中提
- GPU与FPGA加速:硬件赋能AI应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
GPU与FPGA加速:硬件赋能AI应用1.背景介绍1.1人工智能的兴起人工智能(AI)在过去几年中经历了爆炸式增长,成为推动科技创新的核心动力。从语音识别和计算机视觉,到自然语言处理和推荐系统,AI已广泛应用于各个领域。然而,训练和部署AI模型需要大量计算资源,这对传统的CPU架构提出了巨大挑战。1.2硬件加速的必要性为满足AI算法对计算能力的巨大需求,硬件加速技术应运而生。专用硬件如GPU(图形
- 生成对抗网络(GAN):从概念到代码实践(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能GAN网络对抗学习手势识别生成器与鉴别器生成对抗网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- MTCNN 人脸检测技术揭秘:原理、实现与实战(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能MTCNN人脸检测卷积神经网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 目前(2025年2月)计算机视觉(CV)领域一些表现优异的深度学习模型
空空转念
深度学习系列计算机视觉深度学习人工智能
按任务类型分类介绍:图像分类CoCa:结合对比学习和生成学习,通过对比损失对齐图像和文本嵌入,并使用标题生成损失预测文本标记。它在图像分类、跨模态检索和图像描述等任务中表现出色,且仅需极少的任务特定微调。PaLI:这是一个多模态模型,结合了40亿参数的视觉Transformer(ViT)和多种大型语言模型(LLM),并在包含100多种语言的100亿图像和文本数据集上进行训练。PaLI在图像描述、视
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- DeepSeek掘金——SpringBoot 调用 DeepSeek API 快速实现应用开发
不二人生
大模型DeepSeek掘金指南springbootdeepseek
SpringBoot实现DeepSeekAPI调用1.项目依赖在pom.xml中添加以下依赖:org.springframework.bootspring-boot-starter-webfluxorg.projectlomboklombokcom.fasterxml.jackson.corejackson-databind2.项目结构<
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出