《OpenGL ES: (二) 基本概念》

学习OpenGL ES 2.0需要知道OpenGL ES 2.0相关的一些概念及知识。
在上段中提到了OpenGL ES 2.0相对1.x全新的两个重要东西——顶点着色器和片元着色器。

顶点着色器

着色器(Shader)是在GPU上运行的小程序。从名称可以看出,可通过处理它们来处理顶点。此程序使用OpenGL ES SL语言来编写。它是一个描述顶点或像素特性的简单程序。

对于发送给GPU的每一个顶点,都要执行一次顶点着色器。其功能是把每个顶点在虚拟空间中的三维坐标变换为可以在屏幕上显示的二维坐标,并带有用于z-buffer的深度信息。顶点着色器可以操作的属性有:位置、颜色、纹理坐标,但是不能创建新的顶点。
顶点着色器的输入输出模型如下:


image.png

片元着色器

片元着色器计算每个像素的颜色和其它属性。它通过应用光照值、凹凸贴图,阴影,镜面高光,半透明等处理来计算像素的颜色并输出。它也可改变像素的深度(z-buffering)或在多个渲染目标被激活的状态下输出多种颜色。一个片元着色器不能产生复杂的效果,因为它只在一个像素上进行操作,而不知道场景的几何形状。
片元着色器的输入输出模型如下:


image.png

着色器语言

着色器语言(Shading Language)是一种高级的图形编程语言,仅适合于GPU编程,其源自应用广泛的C语言。对于顶点着色器和片元着色器的开发都需要用到着色器语言进行开发。它是面向过程的而非面向对象。
关于着色器语言中的变量、语法在以后使用过程中会提及。想要系统的学习着色器语言,请查阅其他相关博文和书籍。

坐标系

OpenGL ES采用的是右手坐标,选取屏幕中心为原点,从原点到屏幕边缘默认长度为1,也就是说默认情况下,从原点到(1,0,0)的距离和到(0,1,0)的距离在屏幕上展示的并不相同。即向右为X正轴方向,向左为X负轴方向,向上为Y轴正轴方向,向下为Y轴负轴方向,屏幕面垂直向上为Z轴正轴方向,垂直向下为Z轴负轴方向。

图形的绘制

前面提到OpenGL ES2.0的世界里面只有点、线、三角形,其它更为复杂的几何形状都是由三角形构成的。包括正方形、圆形、正方体、球体等。但是其他更为复杂的物体,我们不可能都自己去用三角形构建,这个时候就需要通过加载利用其他软件(比如3DMax)构建的3D模型。

投影

OpenGL ES 的世界是3D的,但是手机屏幕能够给我展示的终究是一个平面,只不过是在绘制的过程中利用色彩和线条让画面呈现出3D的效果。OpenGL ES将这种从3D到2D的转换过程利用投影的方式使计算相对使用者来说变得简单可设置。
OpenGL ES中有两种投影方式:正交投影透视投影。正交投影,物体不会随距离观测点的位置而大小发生变化。而透视投影,距离观测点越远,物体越小,距离观测点越近,物体越大。

光照

如果利用直接给出颜色的方式来对3D场景中的物体进行着色渲染,很难使3D场景拥有较强的真实感。一般来说,曲面物体比平面物体更能体现出光照效果。想用数学模型完全模拟真实世界的光照情况是很难的,而OpenGL ES 2.0采用的光照模型相对真实世界的光照是进行了很大的简化。在OpenGL ES 2.0中,光照由三种元素组成(也可以说是三种通道组成),分别为环境光镜面光散射光

  • 环境光是指从四面八方照射到物体上,其具体公式为:
image.png
  • 散射光是指现实世界中组草的物体表面被光照射时,反射光在各个方向基本均匀的情况,其具体公式为:
image.png

实际开发中往往分两步计算:


image.png
  • 镜面光是指现实世界中光滑的表面被照射时会有方向很集中的反射光,与散射光最终强度依赖于入射光与被照射点的法向量夹角不同,镜面光的强度还依赖于观察者的位置,具体公式如下:


    image.png

    实际开发中也是往往分两步计算:

image.png

纹理映射

现实世界中的物体往往是绚丽多彩的,要模拟现实世界的绚丽多彩,绘制出更加真实、酷炫的3D物体,就需要用到纹理映射了。纹理映射是将2D的纹理映射到3D场景中的立体物体上

其它

其它更多的诸如3D模型加载、贴图、阴影、粒子、混合与雾、标志板、天空盒和与天空穹等知识后续学习使用时再详细介绍。

参考:https://blog.csdn.net/junzia/article/details/52793354

你可能感兴趣的:(《OpenGL ES: (二) 基本概念》)