~~~~~~~ 显示器属于计算机的 I/O 设备,即输入输出设备。它是一种将特定电子信息输出到屏幕上再反射到人眼的显示工具
常见显示器有三类:
~~~~~~~ CRT显示器:CRT显示器是靠电子束激发屏幕内表面的荧光粉来显示图像的,由于荧光粉被点亮后很快会熄灭,所以电子枪必须循环地不断激发这些点。
~~~~~~~ LCD显示器:液晶显示器,简称 LCD(Liquid Crystal Display),相对于上一代 CRT显示器,LCD 显示器具有功耗低、体积小、承载的信息量大及不伤眼的优点,因而它成为了现在的主流电子显示设备,其中包括电视、电脑显示器、手机屏幕及各种嵌入式设备的显示器。
液晶显示器的显示结构:
~~~~~~~ 液晶是一种介于固体和液体之间的特殊物质,它是一种有机化合物,常态下呈液态,但是它的分子排列却和固体晶体一样非常规则,因此取名液晶。如果给液晶施加电场,会改变它的分子排列,从而改变光线的传播方向,配合偏振光片,它就具有控制光线透过率的作用,再配合彩色滤光片,改变加给液晶电压大小,就能改变某一颜色透光量的多少
~~~~~~~ 利用这种原理,做出可控红、绿、蓝光输出强度的显示结构,把三种显示结构组成一个显示单位,通过控制红绿蓝的强度,可以使该单位混合输出不同的色彩,这样的一个显示单位被称为像素。
注意: 液晶本身是不发光的,所以需要有一个背光灯提供光源
~~~~~~~ LED点阵彩色显示器的单个像素点内包含红绿蓝三色LED灯,通过控制红绿蓝颜色的强度进行混色,实现全彩颜色输出,多个像素点构成一个屏幕。由于每个像素点都是LED灯自发光的,所以在户外白天也显示得非常清晰,但由于LED灯体积较大,导致屏幕的像素密度低,所以它一般只适合用于广场上的巨型显示器。相对来说,单色的LED点阵显示器应用得更广泛,如公交车上的信息展示牌、店广告牌等。
~~~~~~~ 新一代的OLED显示器与LED点阵彩色显示器的原理类似,但由于它采用的像素单元是“有机发光二极管”(Organic Light Emitting Diode),所以像素密度比普通LED点阵显示器高得多
OLED显示器不需要背光源、对比度高、轻薄、视角广及响应速度快等优点。待到生产工艺更加成熟时,必将取代现在液晶显示器的地位。
像素
像素是组成图像的最基本单元要素,显示器的像素指它成像最小的点,即前面讲解液晶原理中提到的一个显示单元。
分辨率
一些嵌入式设备的显示器常常以“行像素值x列像素值”表示屏幕的分辨率。如分辨率800x480表示该显示器的每一行有800个像素点,每一列有480个像素点,也可理解为有800列,480行。
色彩深度
色彩深度指显示器的每个像素点能表示多少种颜色,一般用“位”(bit)来表示。如单色屏的每个像素点能表示亮或灭两种状态(即实际上能显示2种颜色),用1个数据位就可以表示像素点的所有状态,所以它的色彩深度为1bit,其它常见的显示屏色深为16bit、24bit。
显示器尺寸
显示器的大小一般以英寸表示,如5英寸、21英寸、24英寸等,这个长度是指屏幕对角线的长度, 通过显示器的对角线长度及长宽比可确定显示器的实际长宽尺寸
显存
液晶屏中的每个像素点都是数据,在实际应用中需要把每个像素点的数据缓存起来,再传输给液晶屏,一般会使用 SRAM 或 SDRAM 性质的存储器,而这些专门用于存储显示数据的存储器,则被称为显存。显存一般至少要能存储液晶屏的一帧显示数据
如分辨率为 800x480 的 液 晶 屏 使 用 RGB888 格 式 显 示 , 它 的 一 帧 显 示 数 据 大 小 为 :3x800x480=1152000 字 节 ;若 使 用 RGB565 格 式 显 示 , 一 帧 显 示 数 据 大 小 为 :2x800x480=768000 字节。
一般来说,外置的液晶控制器会自带显存,而像 STM32F429等集成液晶控制器的芯片可使用内部 SRAM或外扩 SDRAM用于显存空间
~~~~~~~ STM32F429 系列的芯片不需要额外的液晶控制器,也就是说它把专用液晶控制器的功能集成到STM32F429 芯片内部了,可以理解为电脑的 CPU集成显卡。而 STM32F407 系列的芯片由于没有集成液晶控制器到芯片内部,所以它只能驱动自带控制器的屏幕,可以理解为电脑的外置显卡。
完整的显示屏由液晶显示面板、电容触摸面板以及 PCB底板构成
~~~~~~~ STM32F429 系列的芯片不需要额外的液晶控制器,也就是说它把专用液晶控制器的功能集成到 STM32F429 芯片内部了,可以理解为电脑的 CPU集成显卡。而 STM32F407 系列的芯片由于没有集成液晶控制器到芯片内部,所以它只能驱动自带控制器的屏幕,可以理解为电脑的外置显卡。
~~~~~~~ 液晶驱动芯片或LCD驱动器,其内部有着较大的缓存空间可以存储文字、图像等数据,并能够将这些信息送入液晶模块进行显示,由于专用的芯片,因此速度往往比较快。
~~~~~~~ LCD驱动芯片的主要功能就是对主机发送过来的数据/命令,进行变换,变成每个像素的RGB数据,使之在屏幕上显示出来。常见的液晶驱动芯片有ILI932、ILI9328、SSD1963、HX8347、ILI9341、NT5510等
内部包含1215KB frame buffer
支持分辨率为864*480的显示屏
支持像素位深为24bpp的显示模式(RGB888)
注:液晶屏内部包含SSD1963控制器,该控制器使用 8080 接口与单片机通讯
注:STM32通过8080接口与SSD1963 芯片进行通讯,实现对液晶屏的控制。通讯的内容主要包括命令和显存数据,显存数据即各个像素点的 RGB565 内容;命令是指对 SSD1963的控制指令,MCU 可通过8080接口发送命令编码控制 SSD1963的工作方式,例如复位指令、设置光标指令、睡眠。
void LCD_WR_Byte(uint8_t dat, uint8_t cmd)
{
LCD_Data_Out(dat); //放入数据
if(cmd)
LCD_DC_Set(); //传命令
else
LCD_DC_Clr(); //传数据
LCD_CS_Clr(); //拉低片选
LCD_WR_Clr(); //写使能
LCD_WR_Set(); //WR产生上升沿,数据锁存
LCD_CS_Set(); //取消片选
LCD_DC_Set(); //复位DC信号线
}
Tpwcsl = ADDSET + DATAST +1 > 30 ~~~~ 建议适当取大一点点
TCS = ADDSET > 2 ns ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ADDSET = 1
TPWLW = DATAST +1 > 12ns ~~~~~~~~~~~~~~~~~~~ DATAST = 3
~~~~~~~ 对于FSMC和8080接口,前四种信号线都是完全一样的,仅仅是FSMC的地址信号线A[25:0]与8080的数据/命令选择线D/C#有区别。
~~~~~~~ 为了模拟出8080时序,我们可以把FSMC的A0地址线与SSD1963芯片8080接口的D/C#信号线连接,那么当A0为高电平时(即D/C#为高电平),数据线D[15:0]的信号会被SSD1963理解为数值,若A0为低电平时(即D/C#为低电平),传输的信号则会被理解为命令。
注:LCD控制器的片选连入到FSMC的NE4管脚。所以当发出0x6C00 0000-0x6FFF FFFF之间的地址时NE4输出低电平,选中LCD控制器
~~~~~~~ 在实际控制时,以上地址计算方式还不完整,根据《STM32 参考手册》对 FSMC 访问NOR FLASH 的说明STM32 内部访问地址时使用的是内部 HADDR 总线, HADDR[25:0] 包含外部存储器地址。由于 HADDR 为字节地址,而存储器按字寻址,所以根据存储器数据宽度不同,实际向存储器发送的地址也将有所不同,如下表所示。
注:实际控制A0时:
把前面的地址<<1就可以了
0x6C000000 低电平表示命令
0x6C000002 高电平表示数据
使用软件Image2Lcd软件
点击保存生成,注意图片c文件名称,后面要用
在main函数中包含testimage.h
调用图片显示函数
下载到控制板查看效果
~~~~~~~ 与显示图片类似,我们只需要把显示字体的每个像素的颜色数据依次写入LCD的frame buffer中即可。因此我们首先可以获取字体字幕的像素数据
其他中文编码:
~~~~~~~ 仅有字符编码,计算机还不知道该如何表达该字符,因为字符实际上是一个个独特的图形,计算机必须把字符编码转化成对应的字符图形人类才能正常识别,因此我们要给计算机提供字符的图形数据,这些数据就是字模。如下图所示(size = 16*16)
字模的数据表示
~~~~~~~ 已知字模是图形数据,而图形在计算机中是由一个个像素点组成的,所以字模实质是一个个像素点数据。为方便处理,我们把字模定义成方块形的像素点阵,且每个像素点只有 0和 1这两种状态.。我们用1个数据位记录一个像素点的状态,把有笔迹的点以“1”表示,无笔迹像素点以“0”表示即可。这样一个汉字图形,使用 16x16/8=32 个字节来就可以记录下来。