POJ 1486 Sorting Slides (二分图关键匹配边)

题意

给你n个幻灯片,每个幻灯片有个数字编号1~n,现在给每个幻灯片用A~Z进行编号,在该幻灯片范围内的数字都可能是该幻灯片的数字编号。问有多少个幻灯片的数字和字母确定的。

思路

确定幻灯片的数字就是求完美匹配也就是最大匹配,而题目要求的边就是 匹配的关键边,也叫必须边,即任意一个最大匹配一定要包含这条边。 关键边求法先求一遍最大匹配,然后枚举删去匹配边,看之后的最大匹配是否减小,如果减小则该边是匹配关键边。 这让我想起了寻找关键割边:如果一个割边增加流量后整个最大流增加则该割边是关键割边。呵呵,是不是很像?算法的魅力之一就在于举一反三吧^_^~

代码

 
#include 
 
   
    
  
#include 
  
    
      #include 
     
       #include 
      
        #include 
        #include 
        
          #include 
         
           #define MID(x,y) ((x+y)/2) #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; const int MAXV = 55; //N1+N2 vector 
          
            adj[MAXV]; struct MaximumMatchingOfBipartiteGraph{ int vn; void init(int n){ //二分图两点集点的个数 vn = n; for (int i = 0; i <= vn; i ++) adj[i].clear(); } void add_uedge(int u, int v){ adj[u].push_back(v); adj[v].push_back(u); } bool vis[MAXV]; int mat[MAXV]; //记录已匹配点的对应点 bool cross_path(int u){ for (int i = 0; i < (int)adj[u].size(); i ++){ int v = adj[u][i]; if (!vis[v]){ vis[v] = true; if (mat[v] == 0 || cross_path(mat[v])){ mat[v] = u; mat[u] = v; return true; } } } return false; } int hungary(){ mem(mat, 0); int match_num = 0; for (int i = 1; i <= vn; i ++){ mem(vis, 0); if (!mat[i] && cross_path(i)){ match_num ++; } } return match_num; } }match; struct xy{ int x1, x2, y1, y2; int x, y; }a[MAXV]; bool del[MAXV][MAXV]; void build(int n){ match.init(n+n); for (int i = 1; i <= n; i ++){ for (int j = n+1; j <= n+n; j ++){ if (!del[i][j] && a[j].x >= a[i].x1 && a[j].x <= a[i].x2 && a[j].y >= a[i].y1 && a[j].y <= a[i].y2){ match.add_uedge(i, j); } } } } map 
           
             key_match; int main(){ //freopen("test.in", "r", stdin); //freopen("test.out", "w", stdout); int n; int t = 1; while(scanf("%d", &n), n){ for (int i = 1; i <= n; i ++){ scanf("%d %d %d %d", &a[i].x1, &a[i].x2, &a[i].y1, &a[i].y2); } for (int i = 1; i <= n; i ++){ scanf("%d %d", &a[i+n].x, &a[i+n].y); } mem(del, false); build(n); int max_match = match.hungary(); key_match.clear(); for (int i = 1; i <= n; i ++){ key_match.insert(make_pair(i+64, match.mat[i]-n)); } map 
            
              :: iterator it; for (it = key_match.begin(); it != key_match.end(); it ++){ del[it->first - 64][it->second+n] = true; build(n); del[it->first - 64][it->second+n] = false; int tmp_match = match.hungary(); if (tmp_match == max_match){ it->second = -1; } } printf("Heap %d\n", t ++); bool ok = 0; for (it = key_match.begin(); it != key_match.end(); it ++){ if (it->second == -1) continue; ok = 1; printf("(%c,%d) ", it->first, it->second); } if (ok){ puts("\n"); } else{ puts("none\n"); } } return 0; } 
             
            
           
          
         
       
      
    
 
   

你可能感兴趣的:(sort)