fork()以后,子进程的用户区数据和父进程一样。内核区也会拷贝过来,但是pid不一样。
fork返回值,父进程pid大于0,子进程pid等于0。
父进程和子进程运行在不同的内存空间。
Linux的fork()使用写时拷贝,写时拷贝是一种推迟甚至避免拷贝数据的技术。读时共享,写时复制。
父子进程之间的关系。
fork()函数的返回值。父进程中pid>0,返回子进程的PID,子进程返回0。
pcb中一些数据,当前进程的id,pid,ppid,信号集。
子进程刚被创建时,还没有进行写数据的操作,用户区的数据和文件描述符都是一样的。
使用GDB调试的时候,GDB默认只能跟踪一个进程,可以在fork函数调用之前,通过指令设置GDB调试工具跟踪父进程或者是子进程,默认跟踪父进程。
设置调试父进程或者子进程:set follow-fork-mode [parent | child]
设置调试模式:set detach-on-fork [on | off] 默认为on,表示调试当前进程的时候,其他进程继续运行,如果为off,调试当前进程的时候,其他进程被GDB挂起。
查看调试的进程:info inferiors
切换当前调试的进程:inferior id
使进程脱离GDB调试,detach inferiors id
进程退出
#include
void exit(int status);
//exit()会在调用_exit系统调用之前,刷新I/O缓冲,关闭文件描述符。
#include
void _exit(int status);
孤儿进程
僵尸进程
进程回收
#include
#include
pid_t wait(int *wstatus)
// 功能:等待任意一个子进程结束,如果一个子进程结束了,此函数会回收子进程的资源。
// 参数:进程退出时的状态信息,传入的是一个int类型的地址,传出参数。
//返回值:成功返回被回收的子进程的ID,失败-1。(所有的子进程都结束,调用函数失败)
//调用wait函数的进程会被挂起(阻塞),直到它的一个子进程退出或者收到一个不能被忽略的信号时才被唤醒。
//如果没有子进程,函数立刻返回,返回-1,如果子进程都已经结束了也会立即返回-1,并回收子系统的资源。
退出信息相关的宏函数
WIFEXITED(status):非零,进程正常退出。
WEXITSTATUS(status):如果上宏为真,获取进程退出的状态。
WIFSIGNALED(status):非零,进程异常终止
WIERMSIG(status):如果上宏为真,获取使进程终止的信号编号。
#include
#include
pid_t waitpid(pid_t pid,int *wstatus,int options);
pid>0:某个子进程的pid
pid=0:回收当前进程组的所有子进程
pid=-1:回收所有的子进程,相当于wait().
pid<-1:某个进程组的组id的绝对值,回收指定进程组中的子进程。
options:设置阻塞或者非阻塞。
返回值:
Linux进程间通信
同一主机进程间通信:
不同主机(网络)进程间通信:Socket
#include
int pipe(int pipefd[2])
/*
参数:int pipefd[2] 这个数组是一个传出参数。pipefd[0]对应管道的读端,pipefd[1]对应管道的写端。
返回值:成功返回0,失败返回-1。
匿名管道只能用于具有关系的进程之间的通信。
管道默认是阻塞的:如果管道中没有数据,read阻塞,如果管道满了,write阻塞。
*/
ulimit -a
#include
long fpathconf(int fd,int name)
实现 ps aux | grep xxx 父子进程间通信
使用管道时,需要注意一下几种特殊的情况(假设都是阻塞I/O操作)
总结
设置管道非阻塞
#include
#include
int mkfifo(const char *pathname,mode_t mode)
有名管道的注意事项
读管道
写管道
进程A
进程B
#include
void *mmap(void *addr,size_t length,int prot,int flags,int fd,off_t offset);
- 功能:将一个文件或者设备的数据映射到内存中
- 参数:
- void *addr: NULL, 由内核指定
- length : 要映射的数据的长度,这个值不能为0。建议使用文件的长度。
获取文件的长度:stat lseek
- prot : 对申请的内存映射区的操作权限
-PROT_EXEC :可执行的权限
-PROT_READ :读权限
-PROT_WRITE :写权限
-PROT_NONE :没有权限
要操作映射内存,必须要有读的权限。
PROT_READ、PROT_READ|PROT_WRITE
- flags :
- MAP_SHARED : 映射区的数据会自动和磁盘文件进行同步,进程间通信,必须要设置这个选项
- MAP_PRIVATE :不同步,内存映射区的数据改变了,对原来的文件不会修改,会重新创建一个新的文件。(copy on write)
- fd: 需要映射的那个文件的文件描述符
- 通过open得到,open的是一个磁盘文件
- 注意:文件的大小不能为0,open指定的权限不能和prot参数有冲突。
prot: PROT_READ open:只读/读写
prot: PROT_READ | PROT_WRITE open:读写
- offset:偏移量,一般不用。必须指定的是4k的整数倍,0表示不便宜。
- 返回值:返回创建的内存的首地址
失败返回MAP_FAILED,(void *) -1
int munmap(void *addr,size_t length);
- 功能:释放内存映射
- 参数:
- addr : 要释放的内存的首地址
- length : 要释放的内存的大小,要和mmap函数中的length参数的值一样。
信号是事件发生时对进程的通知机制,有时也成为软件中断,它是在软件层次上对中断机制的一种模拟,是一种异步通信的方式。信号可以导致一个正在运行的进程被另一个正在运行的异步进程中断,转而处理某一个突发事件。
发往进程的诸多信号,通常都是源于内核。引发内核为进程产生信号的各类事件如下:
使用信号的两个主要目的是:
信号的特点:简单,不能携带大量信息,满足某个特定条件才发送,优先级比较高。
查看系统定义的信号列表:kill –l 。 前 31 个信号为常规信号,其余为实时信号。
Linux信号一览表
信号的五种默认处理动作
查看信号的详细信息:man 7 signal
信号的 5 中默认处理动作:
信号的几种状态:产生、未决、递达
SIGKILL 和 SIGSTOP 信号不能被捕捉、阻塞或者忽略,只能执行默认动作。
int kill(pid_t pid, int sig);
- 功能:给任何的进程或者进程组pid, 发送任何的信号 sig
- 参数:
- pid :
> 0 : 将信号发送给指定的进程
= 0 : 将信号发送给当前的进程组
= -1 : 将信号发送给每一个有权限接收这个信号的进程
< -1 : 这个pid=某个进程组的ID取反 (-12345)
- sig : 需要发送的信号的编号或者是宏值,0表示不发送任何信号
int raise(int sig);
- 功能:给当前进程发送信号
- 参数:
- sig : 要发送的信号
- 返回值:
- 成功 0
- 失败 非0
void abort(void);
- 功能: 发送SIGABRT信号给当前的进程,杀死当前进程
#include
unsigned int alarm(unsigned int seconds);
- 功能:设置定时器(闹钟)。函数调用,开始倒计时,当倒计时为0的时候,
函数会给当前的进程发送一个信号:SIGALARM
- 参数:
seconds: 倒计时的时长,单位:秒。如果参数为0,定时器无效(不进行倒计时,不发信号)。
取消一个定时器,通过alarm(0)。
- 返回值:
- 之前没有定时器,返回0
- 之前有定时器,返回之前的定时器剩余的时间
- SIGALARM :默认终止当前的进程,每一个进程都有且只有唯一的一个定时器。
#include
int setitimer(int which, const struct itimerval *new_value,
struct itimerval *old_value);
- 功能:设置定时器(闹钟)。可以替代alarm函数。精度微妙us,可以实现周期性定时
- 参数:
- which : 定时器以什么时间计时
ITIMER_REAL: 真实时间,时间到达,发送 SIGALRM 常用
ITIMER_VIRTUAL: 用户时间,时间到达,发送 SIGVTALRM
ITIMER_PROF: 以该进程在用户态和内核态下所消耗的时间来计算,时间到达,发送 SIGPROF
- new_value: 设置定时器的属性
struct itimerval { // 定时器的结构体
struct timeval it_interval; // 每个阶段的时间,间隔时间
struct timeval it_value; // 延迟多长时间执行定时器
};
struct timeval { // 时间的结构体
time_t tv_sec; // 秒数
suseconds_t tv_usec; // 微秒
};
- old_value :记录上一次的定时的时间参数,一般不使用,指定NULL
- 返回值:
成功 0
失败 -1 并设置错误号
#include
typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);
- 功能:设置某个信号的捕捉行为
- 参数:
- signum: 要捕捉的信号
- handler: 捕捉到信号要如何处理
- SIG_IGN : 忽略信号
- SIG_DFL : 使用信号默认的行为
- 回调函数 : 这个函数是内核调用,程序员只负责写,捕捉到信号后如何去处理信号。
回调函数:
- 需要程序员实现,提前准备好的,函数的类型根据实际需求,看函数指针的定义
- 不是程序员调用,而是当信号产生,由内核调用
- 函数指针是实现回调的手段,函数实现之后,将函数名放到函数指针的位置就可以了。
- 返回值:
成功,返回上一次注册的信号处理函数的地址。第一次调用返回NULL
失败,返回SIG_ERR,设置错误号
SIGKILL SIGSTOP不能被捕捉,不能被忽略。
用户通过键盘 Ctrl + C, 产生2号信号SIGINT (信号被创建)
信号产生但是没有被处理 (未决)
在内核中将所有的没有被处理的信号存储在一个集合中 (未决信号集)
SIGINT信号状态被存储在第二个标志位上
这个未决状态的信号,需要被处理,处理之前需要和另一个信号集(阻塞信号集),进行比较
阻塞信号集默认不阻塞任何的信号
如果想要阻塞某些信号需要用户调用系统的API
在处理的时候和阻塞信号集中的标志位进行查询,看是不是对该信号设置阻塞了
如果没有阻塞,这个信号就被处理
如果阻塞了,这个信号就继续处于未决状态,直到阻塞解除,这个信号就被处理
信号集相关的函数
int sigemptyset(sigset_t *set);
- 功能:清空信号集中的数据,将信号集中的所有的标志位置为0
- 参数:set,传出参数,需要操作的信号集
- 返回值:成功返回0, 失败返回-1
int sigfillset(sigset_t *set);
- 功能:将信号集中的所有的标志位置为1
- 参数:set,传出参数,需要操作的信号集
- 返回值:成功返回0, 失败返回-1
int sigaddset(sigset_t *set, int signum);
- 功能:设置信号集中的某一个信号对应的标志位为1,表示阻塞这个信号
- 参数:
- set:传出参数,需要操作的信号集
- signum:需要设置阻塞的那个信号
- 返回值:成功返回0, 失败返回-1
int sigdelset(sigset_t *set, int signum);
- 功能:设置信号集中的某一个信号对应的标志位为0,表示不阻塞这个信号
- 参数:
- set:传出参数,需要操作的信号集
- signum:需要设置不阻塞的那个信号
- 返回值:成功返回0, 失败返回-1
int sigismember(const sigset_t *set, int signum);
- 功能:判断某个信号是否阻塞
- 参数:
- set:需要操作的信号集
- signum:需要判断的那个信号
- 返回值:
1 : signum被阻塞
0 : signum不阻塞
-1 : 失败
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
- 功能:将自定义信号集中的数据设置到内核中(设置阻塞,解除阻塞,替换)
- 参数:
- how : 如何对内核阻塞信号集进行处理
SIG_BLOCK: 将用户设置的阻塞信号集添加到内核中,内核中原来的数据不变
假设内核中默认的阻塞信号集是mask, mask | set
SIG_UNBLOCK: 根据用户设置的数据,对内核中的数据进行解除阻塞
mask &= ~set
SIG_SETMASK:覆盖内核中原来的值
- set :已经初始化好的用户自定义的信号集
- oldset : 保存设置之前的内核中的阻塞信号集的状态,可以是 NULL
- 返回值:
成功:0
失败:-1
设置错误号:EFAULT、EINVAL
int sigpending(sigset_t *set);
- 功能:获取内核中的未决信号集
- 参数:set,传出参数,保存的是内核中的未决信号集中的信息。
#include
int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);
- 功能:检查或者改变信号的处理。信号捕捉
- 参数:
- signum : 需要捕捉的信号的编号或者宏值(信号的名称)
- act :捕捉到信号之后的处理动作
- oldact : 上一次对信号捕捉相关的设置,一般不使用,传递NULL
- 返回值:
成功 0
失败 -1
struct sigaction {
// 函数指针,指向的函数就是信号捕捉到之后的处理函数
void (*sa_handler)(int);
// 不常用
void (*sa_sigaction)(int, siginfo_t *, void *);
// 临时阻塞信号集,在信号捕捉函数执行过程中,临时阻塞某些信号。
sigset_t sa_mask;
// 使用哪一个信号处理对捕捉到的信号进行处理
// 这个值可以是0,表示使用sa_handler,也可以是SA_SIGINFO表示使用sa_sigaction
int sa_flags;
// 被废弃掉了
void (*sa_restorer)(void);
};
内核实现信号捕捉的过程
共享内存相关的函数
#include
#include
int shmget(key_t key, size_t size, int shmflg);
- 功能:创建一个新的共享内存段,或者获取一个既有的共享内存段的标识。
新创建的内存段中的数据都会被初始化为0
- 参数:
- key : key_t类型是一个整形,通过这个找到或者创建一个共享内存。
一般使用16进制表示,非0值
- size: 共享内存的大小
- shmflg: 属性
- 访问权限
- 附加属性:创建/判断共享内存是不是存在
- 创建:IPC_CREAT
- 判断共享内存是否存在: IPC_EXCL , 需要和IPC_CREAT一起使用
IPC_CREAT | IPC_EXCL | 0664
- 返回值:
失败:-1 并设置错误号
成功:>0 返回共享内存的引用的ID,后面操作共享内存都是通过这个值。
void *shmat(int shmid, const void *shmaddr, int shmflg);
- 功能:和当前的进程进行关联
- 参数:
- shmid : 共享内存的标识(ID),由shmget返回值获取
- shmaddr: 申请的共享内存的起始地址,指定NULL,内核指定
- shmflg : 对共享内存的操作
- 读 : SHM_RDONLY, 必须要有读权限
- 读写: 0
- 返回值:
成功:返回共享内存的首(起始)地址。 失败(void *) -1
int shmdt(const void *shmaddr);
- 功能:解除当前进程和共享内存的关联
- 参数:
shmaddr:共享内存的首地址
- 返回值:成功 0, 失败 -1
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
- 功能:对共享内存进行操作。删除共享内存,共享内存要删除才会消失,创建共享内存的进行被销毁了对共享内存是没有任何影响。
- 参数:
- shmid: 共享内存的ID
- cmd : 要做的操作
- IPC_STAT : 获取共享内存的当前的状态
- IPC_SET : 设置共享内存的状态
- IPC_RMID: 标记共享内存被销毁
- buf:需要设置或者获取的共享内存的属性信息
- IPC_STAT : buf存储数据
- IPC_SET : buf中需要初始化数据,设置到内核中
- IPC_RMID : 没有用,NULL
key_t ftok(const char *pathname, int proj_id);
- 功能:根据指定的路径名,和int值,生成一个共享内存的key
- 参数:
- pathname:指定一个存在的路径
/home/nowcoder/Linux/a.txt
/
- proj_id: int类型的值,但是这系统调用只会使用其中的1个字节
范围 : 0-255 一般指定一个字符 'a'
问题1:操作系统如何知道一块共享内存被多少个进程关联?
- 共享内存维护了一个结构体struct shmid_ds 这个结构体中有一个成员 shm_nattch
- shm_nattach 记录了关联的进程个数
问题2:可不可以对共享内存进行多次删除 shmctl
- 可以的
- 因为shmctl 标记删除共享内存,不是直接删除
- 什么时候真正删除呢?
当和共享内存关联的进程数为0的时候,就真正被删除
- 当共享内存的key为0的时候,表示共享内存被标记删除了
如果一个进程和共享内存取消关联,那么这个进程就不能继续操作这个共享内存。也不能进行关联。
共享内存和内存映射的区别
1.共享内存可以直接创建,内存映射需要磁盘文件(匿名映射除外)
2.共享内存效果更高
3.内存
所有的进程操作的是同一块共享内存。
内存映射,每个进程在自己的虚拟地址空间中有一个独立的内存。
4.数据安全
- 进程突然退出
共享内存还存在
内存映射区消失
- 运行进程的电脑死机,宕机了
数据存在在共享内存中,没有了
内存映射区的数据 ,由于磁盘文件中的数据还在,所以内存映射区的数据还存在。
5.生命周期
- 内存映射区:进程退出,内存映射区销毁
- 共享内存:进程退出,共享内存还在,标记删除(所有的关联的进程数为0),或者关机
如果一个进程退出,会自动和共享内存进行取消关联。