- (PAT甲级)1019 General Palindromic Number 进制转换+回文数 (进制转换问题的实用技巧)
JaredYe
算法c++c语言pat考试
AnumberthatwillbethesamewhenitiswrittenforwardsorbackwardsisknownasaPalindromicNumber.Forexample,1234321isapalindromicnumber.Allsingledigitnumbersarepalindromicnumbers.Althoughpalindromicnumbersaremos
- AI人工智能领域知识图谱在深度学习中的应用拓展
AI人工智能领域知识图谱在深度学习中的应用拓展关键词:知识图谱、深度学习、神经网络、图嵌入、知识表示学习、推理机制、应用场景摘要:本文深入探讨了知识图谱与深度学习的融合应用,系统性地分析了知识图谱在深度学习中的关键技术路径和应用场景。文章首先介绍了知识图谱的基本概念和表示方法,然后详细阐述了知识图谱与深度学习结合的多种技术路线,包括图神经网络、知识嵌入和推理机制等。接着通过具体案例展示了知识图谱增
- Python商务数据分析——Matplotlib 数据可视化学习笔记
爱吃代码的小皇冠
pythonnumpymatplotlibpandas学习笔记数据分析
一、Matplotlib基础认知1.1库功能与定位核心作用:将数据可视化展示,提升数据直观性与说服力应用场景:绘制折线图、饼图、柱状图等2D/3D图表双接口模式:MATLAB风格:通过pyplot函数快速绘图(自动管理图形对象)面向对象:显式创建Figure和Axes对象(适合复杂绘图)1.2核心对象架构容器类:图(Figure)、坐标系(Axes)、坐标轴(Axis)、刻度(Tick)基础类:线
- PCIe学习笔记(26)
IC纯小白
学习笔记网络
ErrorForwarding(错误转发)错误转发(也称为数据中毒),通过设置EP位表示。下面是一些使用错误转发的例子:•例#1:从主存读取遇到不可纠正的错误•例#2:PCI写到主存的奇偶校验错误•例#3:内部数据缓冲区或缓存上的数据完整性错误错误转发使用模型•错误转发仅用于读取完成数据,AtomicOp完成数据,AtomicOp请求数据或写数据,从不用于错误在“头”(请求阶段,地址/命令等)的情
- SapphireRapids NVMe Aggregate Performance with灵活IO测试--学习笔记(二)
向阳生活
学习笔记网络
4.主机系统配置由于NVMe控制器使用队列和数据缓冲区,这些队列和数据缓冲区可以托管在主机系统内存空间的任何位置,因此假设主机系统具有足够的内存容量和内存带宽来同时处理多个NVMe访问,以避免受到内存带宽限制。主机系统是Sapphire-Rapid2S系统,每个插槽上配置了8个DDR564GB,1DPC,运行在每个插槽上的速度为4800MTS(例如,共1TB内存容量)。4.1根端口的硬盘数量Sap
- Linux学习笔记:PCIe内核篇(1):初始化与枚举流程
ZH_2025
嵌入式协议篇PCIE
根据system.map查看内核中PCIe加载流程:root@zh-vm:~#cat/boot/System.map-5.15.0-130-generic|greppci|grepinitcallffffffff8350ff68d__initcall__kmod_pci__453_6907_pci_realloc_setup_params0ffffffff83510098d__initcall__
- UBOOT学习笔记(六):UBOOT启动--CPU架构及板级初始化阶段
ZH_2025
uboot&linux启动篇linuxarm
3.1、_mainENTRY(_main)#ifdefined(CONFIG_TPL_BUILD)&&defined(CONFIG_TPL_NEEDS_SEPARATE_STACK)ldrr0,=(CONFIG_TPL_STACK)/*TPL(三级引导)使用独立栈*/#elifdefined(CONFIG_SPL_BUILD)&&defined(CONFIG_SPL_STACK)ldrr0,=(C
- [pytorch] pytorch_model.bin 和 training_args.bin 的区别
心心喵
pytorch深度学习pytorch神经网络
pytorch_model.bin和training_args.bin是与PyTorch框架和训练过程相关的两个文件。pytorch_model.bin:这是保存了PyTorch模型的二进制文件。在使用PyTorch进行深度学习训练时,经过训练的模型会被保存为这个文件,其中包含了模型的权重参数。这个文件可以被加载到PyTorch中,以便进行推理、评估或继续训练。training_args.bin:
- 【2025最新】AI大模型项目实战教程大揭秘!超详细攻略,手把手带你飞,记得收藏!
大模型教程
人工智能产品经理大模型大模型教程大数据大模型学习程序员
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- 自然语言处理(NLP)中的文本生成控制技术
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据自然语言处理easyui人工智能ai
自然语言处理(NLP)中的文本生成控制技术关键词:文本生成、可控生成、语言模型、Prompt工程、解码策略、条件控制、评估指标摘要:本文深入探讨自然语言处理中文本生成控制技术的最新进展。我们将从基础概念出发,系统分析各种控制方法的原理和实现,包括Prompt设计、解码策略优化、条件控制机制等核心内容。文章将结合数学模型、算法实现和实际案例,全面展示如何实现高质量、可控的文本生成,并探讨该领域面临的
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- FOC学习笔记(3)结构性凸极与饱和性凸极的区别及其在无感FOC中的影响
desssq
FOC记录笔记单片机嵌入式硬件foc算法
电机凸极性(Saliency)是指由于转子磁路不对称性导致的直轴(d轴)和交轴(q轴)磁阻或电感存在差异的特性。这种不对称性表现为d轴(与转子永磁体磁场方向一致)磁阻通常较大(电感较小),而与之正交的q轴磁阻通常较小(电感较大)。凸极性是无位置传感器控制(特别是高频注入法)实现转子位置估算的关键物理基础,尤其在零速和低速工况下至关重要。凸极性主要来源于两种机制:结构性凸极和饱和性凸极。结构性凸极是
- 2.2. 泛函分析讲义I-度量空间概述
吉星照MoMo
实变泛函与测度理论数学建模
泛函分析的三大空间自然是:度量空间、线性赋范空间和Hilbert空间,由[泛函分析的起源与发展],我们知道引入度量空间和希尔伯特空间的动机是截然不同的度量空间是Frechet有意识地去引入一种抽象理论,使得这种理论能够将康托尔,沃尔泰拉以及阿尔泽拉等人的工作统一起来.内积空间是在求解积分方程的过程中创造出来的,赋范线性空间是巴拿赫系统地发展了Frechet的思想,以及利用了Hilbert空间l2,
- DiNA:扩张邻域注意力 Transformer
AI专题精讲
Paper阅读transformer人工智能
摘要Transformer正迅速成为跨模态、跨领域和跨任务中应用最广泛的深度学习架构之一。在计算机视觉领域,除了持续发展的纯transformer架构,分层transformer也因其优越的性能和在现有框架中易于集成而受到广泛关注。这类模型通常采用局部化的注意力机制,如滑动窗口的NeighborhoodAttention(NA)或SwinTransformer的ShiftedWindowSelfA
- 解释神经网络的普适逼近定理(面试题200合集,中频、实用)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)深度学习人工智能
神经网络的普适逼近定理(UniversalApproximationTheorem,UAT)是理解为什么神经网络如此强大和灵活的理论基石之一。它为我们提供了信心,即在某些条件下,一个相对简单的神经网络结构原则上能够模拟出几乎任何复杂的函数。这个定理在深度学习领域中经常被提及,尤其是在讨论模型表达能力的时候。普适逼近定理(UniversalApproximationTheorem)概述普适逼近定理的
- 使用SQL-Ollama与自然语言交互SQL数据库的指南
antja_
数据库sql
#使用SQL-Ollama与自然语言交互SQL数据库的指南##技术背景介绍随着人工智能技术的发展,能够使用自然语言与SQL数据库交互的需求越来越大。这种技术可以帮助用户轻松访问和操作数据库,而无需深刻理解SQL语法。SQL-Ollama是一个专门设计的模板,利用Zephyr-7b模型,通过Ollama在本地运行推理,使这一过程变得简单而高效。##核心原理解析SQL-Ollama通过将自然语言转换为
- 学习笔记2:redis基本操作
学习笔记2:redis基本操作启动服务在命令行中输入以下指令即可启动redis服务:[redis-server文件的路径][redis.conf文件的路径]进入客户端在命令行中输入以下指令即可进入操作redis的客户端:[redis-cli文件的路径]常用操作redis服务的指令#启动redis服务systemctlstartredis#重启redis服务systemctlrestartredis
- 【学习】《算法图解》第九章学习笔记:迪杰斯特拉算法
程序员
一、迪杰斯特拉算法概述迪杰斯特拉算法(Dijkstra'salgorithm)是一种解决带权有向图上单源最短路径问题的贪心算法,由荷兰计算机科学家艾兹赫尔·迪杰斯特拉(EdsgerW.Dijkstra)于1956年提出。该算法常用于路由协议,也可以用作其他图算法的子程序。(一)算法适用场景迪杰斯特拉算法适用于:带权有向图(每条边都有权重)所有权重都为非负值(不能有负权边)需要找出从一个顶点到图中所
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- 文心大模型4.5及X1重磅上线,真实测评
2025年3月16日,人工智能领域迎来一场重要盛事——百度文心大模型4.5如期正式发布。与此同时,百度还惊喜推出了另一款全新模型——文心大模型X1。目前,文心大模型4.5和X1已在文心一言官网(https://yiyan.baidu.com/)正式上线,并免费向用户开放。其中,文心大模型4.5面向企业用户和开发者,用户可以通过登录百度智能云千帆大模型平台,轻松调用文心大模型4.5的API接口,快速
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- python系列教程246——多态
人工智能AI技术
python系列教程python开发语言
朋友们,如需转载请标明出处:https://blog.csdn.net/jiangjunshow声明:在人工智能技术教学期间,不少学生向我提一些python相关的问题,所以为了让同学们掌握更多扩展知识更好地理解AI技术,我让助理负责分享这套python系列教程,希望能帮到大家!由于这套python教程不是由我所写(有时候有空也会参与编写),所以不如我的人工智能教程风趣幽默,学起来比较枯燥;但它的知
- Python 解析 AI 在能源管理与智能电网中的应用
头发在线失联
python人工智能开发语言
```htmlPython解析AI在能源管理与智能电网中的应用Python解析AI在能源管理与智能电网中的应用随着全球对可持续发展的重视和能源需求的不断增长,能源管理与智能电网技术正在成为研究和实践的重要领域。在这个背景下,人工智能(AI)作为一项前沿技术,正被广泛应用于能源管理与智能电网中,以提高效率、优化资源分配并减少环境影响。本文将探讨Python如何在这一领域中发挥作用,并解析其具体应用场
- 如何实现聊天模型响应流式处理
yunwu12777
langchain
在现代人工智能应用中,流式处理聊天模型的响应成为一种常见需求,特别是在需要实时输出或大规模处理时。本文将详细介绍如何在Python中实现聊天模型的同步和异步流式处理,使用langchain库中提供的ChatAnthropic模型作为示例。技术背景介绍流式处理是指从模型逐步获取输出,而不是等待整个输出完成。这对于处理长文本生成或需要动态响应的应用场景特别有用。langchain库中的聊天模型实现了R
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- Kyle的天机学堂学习笔记
Z2475269074
学习笔记
本文将展示一个小白从0->1完成项目的全部历练已经心得PS:要求做到真正的自我思考而不是对着教程敲代码,并借用AI进行辅佐与思考DAY1Maven子工程会继承父工程所有依赖有三套生命周期,互不干扰且同一生命周期内执行命令会以此完成之前的命令1.clean2.default(compile,test,package,install)3.site(deploy)对象DTO数据传输对象,用于服务端与客户
- AI人工智能助力空间智能领域提升运营效率
AI智能探索者
AIAgent智能体开发实战人工智能网络ai
AI人工智能助力空间智能领域提升运营效率关键词:AI人工智能、空间智能领域、运营效率、智能算法、数据驱动摘要:本文聚焦于AI人工智能在空间智能领域的应用,旨在探讨其如何助力该领域提升运营效率。首先介绍了空间智能领域的背景和相关概念,阐述了AI在其中的核心作用和原理。接着详细讲解了相关核心算法,并结合数学模型进行分析。通过项目实战案例展示了AI在空间智能领域的具体应用和实现方式。同时探讨了实际应用场
- 人工智能的发展历程与未来展望
唐骁虎
ai
人工智能的发展历程与未来展望一、人工智能的起源与早期发展1.1人工智能的定义与概念起源人工智能(AI)的定义与概念起源可追溯至20世纪中叶,当时一群具有远见的科学家和工程师开始探索机器是否能够模拟人类智能行为。1956年,在达特茅斯会议上,约翰·麦卡锡首次提出了“人工智能”这一术语,标志着该领域的正式诞生。AI的定义涉及创建能够执行需要人类智能的任务的机器,如视觉感知、语音识别、决策和语言翻译等。
- DeepSeek:AI驱动的效率革命与实战案例解
weixin_45788582
人工智能aiDeepSeek
在人工智能技术的浪潮中,DeepSeek作为一款专注实现AGI(通用人工智能)的先锋工具,正通过其强大的自然语言处理(NLP)与分布式计算能力,重新定义高效办公的边界。以下通过技术解析与实战案例,展现DeepSeek如何赋能个人与企业,开启职场效率革命。一、技术革新:DeepSeek的核心竞争力深度学习赋能DeepSeek的技术架构基于BERT、Transformer等先进深度学习模型,通过构建复
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite