杭电OJ-1874_畅通工程续

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 35363    Accepted Submission(s): 12938


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0 接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B 再接下一行有两个整数S,T(0<=S,T
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
  
  
    
    
    
    
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
  
  
    
    
    
    
2 -1


暴力破解大法虽好,但是对这倒题并没有啥卵用,我为啥知道,因为我试了,测试数据结果也不错,但是提交就会   "堆栈溢出"    查了一下,因为递归太深

最后老老实实的用Dijkstra和Floyd算法


先贴爆破的代码:

#include
using namespace std;
struct dist
{
	int a;
	int b;
	int x;
}*bank;
int n, m,s,t,len;

void sort()										//基于距离降序排序
{
	for (int i = 1; i < m;i++)
	for (int j = 0; j < m - i; j++)
	{
		if (bank[j].x>bank[j + 1].x)
		{
			dist p = bank[j]; bank[j] = bank[j + 1]; bank[j + 1] = p;
		}
	}
}

void work(int o,int r,int q)
{
	for (int i = 0; i < m; i++)
	{
		if (bank[i].a == o)
		{
			if (bank[i].b == r)
			{
				if (q + bank[i].x < len||len==0)
					len = q + bank[i].x;
			}
			else
			{
				work(bank[i].b, r, q + bank[i].x);
			}
		}
	}
}



int main()
{
	while (cin >> n >> m)
	{
		len = 0;
		bank = new dist[m];
		for (int i = 0; i < m; i++)
		{
			cin >> bank[i].a >> bank[i].b >> bank[i].x;
		}
		cin >> s >> t;
		if (m>0)
		{
			sort();
			work(s, t, len);
		}
		if (len == 0)
			work(t, s, len);
		if (len == 0)
			cout << "-1" << endl;
		else
			cout << len << endl;
	}
	return 0;
}

A.Dijkstra算法(单源)

   1.找出从源点能到达的所有的节点,从中选出距离最短的节点并标记一下,下次不再考虑该节点

   2.根据上一步中找出的节点,计算出从源点经过该点能到达的所有的节点的距离并与原数据比较,原数据为-1或比原数据小,更新

   3.循环n-1次

B.Floyd算法(多源)

   1.对每一对节点,判断是否存在另一节点使其距离更短,若有,更新

#include
using namespace std;
int n, m, map[1000][1000], a, b, x, s, t, dist[1000], mindist, u;
bool min[1000];  //dist[i]存放源点到i点的距离,mindist最短距离,u最短距离的节点,min[i]标志是否为最短距离

void dijk(int o,int t)
{
	for (int j = 1; j < n; j++)
	{
		mindist = -1;
		for (int i = 0; i < n; i++)
		{
			dist[i] = map[o][i];
			if (!min[i] && dist[i] != -1 && (mindist == -1 || mindist>dist[i]))		//挑最小
			{
				mindist = dist[i];
				u = i;
			}
		}
		min[u] = true;
		for (int i = 0; i < n; i++)
		{
			if (!min[i] && map[u][i] != -1 && (map[o][i]>map[o][u] + map[u][i]||map[o][i]==-1)) //更新
				map[o][i] = map[o][u] + map[u][i];
		}
	}
}

void floyd()
{
	
	for (int i = 0; i < n;i++)
	for (int j = 0; j < n;j++)
	for (int k = 0; k < n;k++)
	if (map[i][k] != -1 && map[k][j] != -1 && (map[i][j]>map[i][k] + map[k][j] || map[i][j] == -1))
		map[i][j] = map[i][k] + map[k][j];
}

int main()
{
	while (cin >> n >> m)
	{	
		memset(min, false, sizeof(min));
		memset(dist, -1, sizeof(dist));
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < n; j++)
				 map[i][j]=-1;
		}
		for (int i = 0; i < m; i++)
		{
			cin >> a >> b >> x;
			if ( map[a][b] == -1 || map[a][b]>x)
				map[a][b] = map[b][a]=x;						//无向图
		}
		cin >> s >> t;
		if (s == t)
			cout << "0\n";
		else
		{
			//dijk(s,t);
			floyd();
			cout << map[s][t] << endl;
		}		
	}
	return 0;
}

总结:

        知道算法是怎么个步骤和会用代码实现是有一定差距的。



你可能感兴趣的:(HDU,ACM,代码,算法,杭电,编程)