Hadoop第一章:环境搭建
Hadoop第二章:集群搭建(上)
Hadoop第二章:集群搭建(中)
Hadoop第二章:集群搭建(下)
Hadoop第三章:Shell命令
Hadoop第四章:Client客户端
Hadoop第四章:Client客户端2.0
Hadoop第五章:词频统计
Hadoop第五章:序列化
Hadoop第五章:几个案例
Hadoop第五章:几个案例(二)
Hadoop第五章:Join/ETL
今天还是继续带来一些案例。
通过将关联条件作为Map输出的key,将两表满足Join条件的数据并携带数据所来源的文件信息,发往同一个ReduceTask,在Reduce中进行数据的串联。
新建一个包,并创建需要的类。
TableBean.class
package com.atguigu.mapreduce.reducejoin;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class TableBean implements Writable {
private String id;//订单id
private String pid;//产品id
private int amount;//产品数量
private String pname;//产品名称
private String flag;//判断是order表还是pd表的标志字段
public TableBean() {
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getPid() {
return pid;
}
public void setPid(String pid) {
this.pid = pid;
}
public int getAmount() {
return amount;
}
public void setAmount(int amount) {
this.amount = amount;
}
public String getPname() {
return pname;
}
public void setPname(String pname) {
this.pname = pname;
}
public String getFlag() {
return flag;
}
public void setFlag(String flag) {
this.flag = flag;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(id);
out.writeUTF(pid);
out.writeInt(amount);
out.writeUTF(pname);
out.writeUTF(flag);
}
@Override
public void readFields(DataInput in) throws IOException {
this.id = in.readUTF();
this.pid = in.readUTF();
this.amount = in.readInt();
this.pname = in.readUTF();
this.flag = in.readUTF();
}
@Override
public String toString() {
return id + "\t" + pname + "\t" + amount;
}
}
TableMapper.class
package com.atguigu.mapreduce.reducejoin;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean> {
private String filename;
private Text outK = new Text();
private TableBean outV = new TableBean();
@Override
protected void setup(Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
//获取对应文件名称
FileSplit split = (FileSplit) context.getInputSplit();
filename = split.getPath().getName();
}
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
//获取文件
String line = value.toString();
//判断来源,分别封装
if (filename.contains("order")) {
String[] split = line.split("\t");
outK.set(split[1]);
outV.setId(split[0]);
outV.setPid(split[1]);
outV.setAmount(Integer.parseInt(split[2]));
outV.setPname("");
outV.setFlag("order");
} else {
String[] split = line.split("\t");
outK.set(split[0]);
outV.setId("");
outV.setPid(split[0]);
outV.setAmount(0);
outV.setPname(split[1]);
outV.setFlag("pd");
}
context.write(outK, outV);
}
}
TableReducer.class
package com.atguigu.mapreduce.reducejoin;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;
public class TableReducer extends Reducer<Text,TableBean,TableBean, NullWritable> {
@Override
protected void reduce(Text key, Iterable<TableBean> values, Reducer<Text, TableBean, TableBean, NullWritable>.Context context) throws IOException, InterruptedException {
//初始化集合
ArrayList<TableBean> orderBeans = new ArrayList<>();
TableBean pdBean = new TableBean();
//逻辑代码
for (TableBean value : values) {
if ("order".equals(value.getFlag())){
TableBean tmptableBean = new TableBean();
try {
BeanUtils.copyProperties(tmptableBean,value);
} catch (IllegalAccessException e) {
throw new RuntimeException(e);
} catch (InvocationTargetException e) {
throw new RuntimeException(e);
}
orderBeans.add(tmptableBean);
}else {
try {
BeanUtils.copyProperties(pdBean,value);
} catch (IllegalAccessException e) {
throw new RuntimeException(e);
} catch (InvocationTargetException e) {
throw new RuntimeException(e);
}
}
}
for (TableBean orderBean : orderBeans) {
orderBean.setPname(pdBean.getPname());
context.write(orderBean,NullWritable.get());
}
}
}
TableDriver.class
package com.atguigu.mapreduce.reducejoin;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class TableDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(TableDriver.class);
job.setMapperClass(TableMapper.class);
job.setReducerClass(TableReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(TableBean.class);
job.setOutputKeyClass(TableBean.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path("D:\\learn\\hadoop\\Table\\input"));
FileOutputFormat.setOutputPath(job, new Path("D:\\learn\\hadoop\\Table\\output"));
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
1)使用场景
Map Join适用于一张表十分小、一张表很大的场景。
2)优点
思考:在Reduce端处理过多的表,非常容易产生数据倾斜。怎么办?
在Map端缓存多张表,提前处理业务逻辑,这样增加Map端业务,减少Reduce端数据的压力,尽可能的减少数据倾斜。
创建一个新的包,创建需要的类。
MapJoinMapper.class
package com.atguigu.mapreduce.mapjoin;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
public class MapJoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
private HashMap<String, String> pdMap = new HashMap<>();
private Text outK = new Text();
@Override
protected void setup(Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
//获取缓存文件并封装
URI[] cacheFiles = context.getCacheFiles();
FileSystem fs = FileSystem.get(context.getConfiguration());
FSDataInputStream fis = fs.open(new Path(cacheFiles[0]));
//从流中读取数据
BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));
String line;
while (StringUtils.isNoneEmpty(line = reader.readLine())) {
//切割
String[] fields = line.split("\t");
//赋值
pdMap.put(fields[0], fields[1]);
}
//关流
IOUtils.closeStream(reader);
}
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
//处理order.txt
String line = value.toString();
String[] fields = line.split("\t");
//获取pid
String pname = pdMap.get(fields[1]);
//获取订单id和订单数量
//封装
outK.set(fields[0] + "\t" + pname + "\t" + fields[2]);
context.write(outK, NullWritable.get());
}
}
MapJoinDriver.class
package com.atguigu.mapreduce.mapjoin;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
public class MapJoinDriver {
public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException, IOException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(MapJoinDriver.class);
job.setMapperClass(MapJoinMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
// 加载缓存数据
job.addCacheFile(new URI("file:///D:/learn/hadoop/Table/inputpd/pd.txt"));
// Map端Join的逻辑不需要Reduce阶段,设置reduceTask数量为0
job.setNumReduceTasks(0);
FileInputFormat.setInputPaths(job, new Path("D:\\learn\\hadoop\\Table\\inputorder"));
FileOutputFormat.setOutputPath(job, new Path("D:\\learn\\hadoop\\Table\\outputmap"));
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
WebLogMapper.class
package com.atguigu.mapreduce.etl;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
//获取一行
String line = value.toString();
//ETL清洗
boolean result = parseLog(line, context);
if (!result) {
return;
}
//写出
context.write(value, NullWritable.get());
}
private boolean parseLog(String line, Mapper<LongWritable, Text, Text, NullWritable>.Context context) {
//切割
String[] fields = line.split(" ");
//判断长度
if (fields.length > 11) {
return true;
} else {
return false;
}
}
}
WebLogDriver.class
package com.atguigu.mapreduce.etl;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WebLogDriver {
public static void main(String[] args) throws Exception {
// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
args = new String[] { "D:\\learn\\hadoop\\Log\\inputweb", "D:\\learn\\hadoop\\Log\\outputweb" };
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(WebLogDriver.class);
job.setMapperClass(WebLogMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
// 设置reducetask个数为0
job.setNumReduceTasks(0);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
运行查看结果
我们先查看一下源文件。
我使用了VScode查看文件行数。
然后查看运行后的文件。
很明显咱们的数据少了几千条。
第五章的内容基本就到这里了。