AI已被视作赋能实体经济的重要驱动技术,其应用场景需求也逐渐从单点走向规模化

  场景需求不断涌现、创新应用层出不穷,AI正迎来蓬勃发展期。然而,当传统行业纷纷应用AI推进数字化转型、智能化升级时,AI行业自身却还处于手工作坊式的阶段。以上游AI企业专项定制进行算法开发的传统模式,已难以满足规模化的应用需求。越来越多的企业都希望具备自主的AI模型开发能力以灵活应对场景需求,同时又诉求在投入成本和产出效益方面实现平衡。
  在技术发展与行业需求的双向促进下,AI领域的新星企业共达地从竞争激烈的行业中脱颖而出,凭借自主创新的AutoML平台和技术,用更低门槛、更低成本即可训练出高精度的AI模型。以此为核心构建的GoodAIdea零代码自动化AI算法训练平台,更可为企业提供零代码AI算法训练以及一键到端的部署能力。企业无需组建专业AI团队,仅需上传算法相关的数据集,即可以0代码的方式,在数小时内获取高精度的AI模型,并直接下发到应用终端上。这种一站式的AI模型定制开发模式,将定制开发各类机器视觉长尾算法的效率提升近百倍。
  从单点落地到规模化应用阶段,AI行业急需破解门槛高、成本高、效率低困境
  近年来,机器学习在计算机视觉领域实现的突破,让AI技术成为了各行各业全新的生产力工具,并全面掀起了AI商业化的第一波浪潮。短短两三年间,以人脸识别、人群分析、车辆识别、车牌识别等为主的视觉AI技术,为一些单点应用场景带来了巨大创新,提升了诸如人员通行、交通管理、城市安全管理的效率和体验。
  然而,随着AI技术与传统行业的融合逐步深入,AI已被视作赋能实体经济的重要驱动技术,其应用场景需求也逐渐从单点走向规模化。尤其是“十四五”规划以来,传统行业的数字化转型纷纷加速,对AI技术的应用提出了越来越多的碎片化、长尾化的需求。比如通过AI技术识别共享单车乱停乱放、高空抛物、烟火、占到经营、街道垃圾、渣土车等并实现智能化管理,成为当下推进智慧城市建设的重要基础。而在工业领域,针对成百上千种不同类型零部件的多种缺陷进行自动化检测,是提高生产质量和生产效率的重要关键。
  但面对这样的产业机遇,AI的规模化落地却面临诸多挑战。一方面,场景的碎片化使得大量的需求存在不确定性,给数据处理带来极大难题,无法针对性地进行数据采集、标注。同时在算法模型的训练过程中,开发人员也很判断何种场景使用何种算法,导致最终开发出来的算法性能存在较多不确定性。

你可能感兴趣的:(人工智能,计算机视觉,big,data)