Pytorch,矩阵求和维度变化解析

二维可以想象成一张纸,
三维可以想象成多张纸叠在一块
四维可以想成多沓纸
求和时,如果没设定keepdim=True,则会消去相加的那一维度,否则则将维度变为1

A = torch.arange(20).reshape(5, 4)
A,A.shape, A.sum()
(tensor([[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11],
         [12, 13, 14, 15],
         [16, 17, 18, 19]]),
 torch.Size([5, 4]),
 tensor(190))

指定求和汇总张量的轴

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
(tensor([40, 45, 50, 55]), torch.Size([4]))
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
(tensor([ 6, 22, 38, 54, 70]), torch.Size([5]))
# 等价于A.SUM()
A.sum(axis=[0, 1]), A.sum(axis=[0, 1]).shape
(tensor(190), torch.Size([]))
# 三维 测试

SA = torch.arange(20 * 2).reshape(2, 5, 4)
SA, SA.shape
(tensor([[[ 0,  1,  2,  3],
          [ 4,  5,  6,  7],
          [ 8,  9, 10, 11],
          [12, 13, 14, 15],
          [16, 17, 18, 19]],
 
         [[20, 21, 22, 23],
          [24, 25, 26, 27],
          [28, 29, 30, 31],
          [32, 33, 34, 35],
          [36, 37, 38, 39]]]),
 torch.Size([2, 5, 4]))
SA_sum_axis0 = SA.sum(axis=0)
SA_sum_axis0, SA_sum_axis0.shape
(tensor([[20, 22, 24, 26],
         [28, 30, 32, 34],
         [36, 38, 40, 42],
         [44, 46, 48, 50],
         [52, 54, 56, 58]]),
 torch.Size([5, 4]))
SA_sum_axis1 = SA.sum(axis=1)
SA_sum_axis1, SA_sum_axis1.shape
(tensor([[ 40,  45,  50,  55],
         [140, 145, 150, 155]]),
 torch.Size([2, 4]))
SA_sum_axis2 = SA.sum(axis=2)
SA_sum_axis2, SA_sum_axis2.shape
(tensor([[  6,  22,  38,  54,  70],
         [ 86, 102, 118, 134, 150]]),
 torch.Size([2, 5]))

四维矩阵求和

A = torch.arange(20*2*2).reshape((2,2,5,4))
A, A.shape
(tensor([[[[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15],
           [16, 17, 18, 19]],
 
          [[20, 21, 22, 23],
           [24, 25, 26, 27],
           [28, 29, 30, 31],
           [32, 33, 34, 35],
           [36, 37, 38, 39]]],


[[[40, 41, 42, 43],
[44, 45, 46, 47],
[48, 49, 50, 51],
[52, 53, 54, 55],
[56, 57, 58, 59]],

          [[60, 61, 62, 63],
           [64, 65, 66, 67],
           [68, 69, 70, 71],
           [72, 73, 74, 75],
           [76, 77, 78, 79]]]]),
 torch.Size([2, 2, 5, 4]))
A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
(tensor([[[ 40,  42,  44,  46],
          [ 48,  50,  52,  54],
          [ 56,  58,  60,  62],
          [ 64,  66,  68,  70],
          [ 72,  74,  76,  78]],
 
         [[ 80,  82,  84,  86],
          [ 88,  90,  92,  94],
          [ 96,  98, 100, 102],
          [104, 106, 108, 110],
          [112, 114, 116, 118]]]),
 torch.Size([2, 5, 4]))
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
(tensor([[[ 20,  22,  24,  26],
          [ 28,  30,  32,  34],
          [ 36,  38,  40,  42],
          [ 44,  46,  48,  50],
          [ 52,  54,  56,  58]],
 
         [[100, 102, 104, 106],
          [108, 110, 112, 114],
          [116, 118, 120, 122],
          [124, 126, 128, 130],
          [132, 134, 136, 138]]]),
 torch.Size([2, 5, 4]))

你可能感兴趣的:(pytorch,pytorch,矩阵,python)