使用Python进行iPhone销售分析

苹果iPhone是全球最畅销的智能手机之一。在印度,智能手机品牌之间存在巨大的竞争,在那里你可以以iPhone一半的价格获得智能手机中的最新技术。不过,iPhone在印度的销量仍然很高。在这篇文章中,将带你完成使用Python进行iPhone销售分析的任务。

使用Python进行iPhone销售分析

对于iPhone销售分析任务,Kaggle上有一个数据集,其中包含有关印度iPhone在Flipkart上销售的数据。这将是分析iPhone在印度销量的理想数据集。您可以从这里下载数据集。

https://www.kaggle.com/datasets/komalkhetlani/apple-iphone-data

导入必要的Python库和数据集:

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go

data = pd.read_csv("apple_products.csv")
print(data.head())

输出

                               Product Name  \
0         APPLE iPhone 8 Plus (Gold, 64 GB)   
1  APPLE iPhone 8 Plus (Space Grey, 256 GB)   
2      APPLE iPhone 8 Plus (Silver, 256 GB)   
3           APPLE iPhone 8 (Silver, 256 GB)   
4             APPLE iPhone 8 (Gold, 256 GB)   

                                         Product URL  Brand  Sale Price  \
0  https://www.flipkart.com/apple-iphone-8-plus-g...  Apple       49900   
1  https://www.flipkart.com/apple-iphone-8-plus-s...  Apple       84900   
2  https://www.flipkart.com/apple-iphone-8-plus-s...  Apple       84900   
3  https://www.flipkart.com/apple-iphone-8-silver...  Apple       77000   
4  https://www.flipkart.com/apple-iphone-8-gold-2...  Apple       77000   

     Mrp  Discount Percentage  Number Of Ratings  Number Of Reviews  \
0  49900                    0               3431                356   
1  84900                    0               3431                356   
2  84900                    0               3431                356   
3  77000                    0              11202                794   
4  77000                    0              11202                794   

                Upc  Star Rating   Ram  
0  MOBEXRGV7EHHTGUH          4.6  2 GB  
1  MOBEXRGVAC6TJT4F          4.6  2 GB  
2  MOBEXRGVGETABXWZ          4.6  2 GB  
3  MOBEXRGVMZWUHCBA          4.5  2 GB  
4  MOBEXRGVPK7PFEJZ          4.5  2 GB  

在继续之前,让我们快速查看一下这个数据集是否包含任何null值:

print(data.isnull().sum())

输出

Product Name           0
Product URL            0
Brand                  0
Sale Price             0
Mrp                    0
Discount Percentage    0
Number Of Ratings      0
Number Of Reviews      0
Upc                    0
Star Rating            0
Ram                    0
dtype: int64

数据集没有任何空值。现在,让我们来看看数据的描述性统计:

print(data.describe())

输出

          Sale Price            Mrp  Discount Percentage  Number Of Ratings  \
count      62.000000      62.000000            62.000000          62.000000   
mean    80073.887097   88058.064516             9.951613       22420.403226   
std     34310.446132   34728.825597             7.608079       33768.589550   
min     29999.000000   39900.000000             0.000000         542.000000   
25%     49900.000000   54900.000000             6.000000         740.000000   
50%     75900.000000   79900.000000            10.000000        2101.000000   
75%    117100.000000  120950.000000            14.000000       43470.000000   
max    140900.000000  149900.000000            29.000000       95909.000000   

       Number Of Reviews  Star Rating  
count          62.000000    62.000000  
mean         1861.677419     4.575806  
std          2855.883830     0.059190  
min            42.000000     4.500000  
25%            64.000000     4.500000  
50%           180.000000     4.600000  
75%          3331.000000     4.600000  
max          8161.000000     4.700000  

找出所有关于印度排名前10的iPhone的数据:

highest_rated = data.sort_values(by=["Star Rating"], 
                                 ascending=False)
highest_rated = highest_rated.head(10)
print(highest_rated['Product Name'])

输出

20     APPLE iPhone 11 Pro Max (Midnight Green, 64 GB)
17         APPLE iPhone 11 Pro Max (Space Grey, 64 GB)
16    APPLE iPhone 11 Pro Max (Midnight Green, 256 GB)
15               APPLE iPhone 11 Pro Max (Gold, 64 GB)
14              APPLE iPhone 11 Pro Max (Gold, 256 GB)
0                    APPLE iPhone 8 Plus (Gold, 64 GB)
29                     APPLE iPhone 12 (White, 128 GB)
32          APPLE iPhone 12 Pro Max (Graphite, 128 GB)
35                     APPLE iPhone 12 (Black, 128 GB)
36                      APPLE iPhone 12 (Blue, 128 GB)
Name: Product Name, dtype: object

根据上述数据,以下是印度最受欢迎的5款iPhone:

  1. APPLE iPhone 11 Pro Max (Midnight Green, 64 GB)
  2. APPLE iPhone 11 Pro Max (Space Grey, 64 GB)
  3. APPLE iPhone 11 Pro Max (Midnight Green, 256 GB)
  4. APPLE iPhone 11 Pro Max (Gold, 64 GB)
  5. APPLE iPhone 11 Pro Max (Gold, 256 GB)

现在让我们来看看评分最高的iPhone的评分数量:

iphones = highest_rated["Product Name"].value_counts()
label = iphones.index
counts = highest_rated["Number Of Ratings"]
figure = px.bar(highest_rated, x=label, 
                y = counts, 
            title="Number of Ratings of Highest Rated iPhones")
figure.show()

使用Python进行iPhone销售分析_第1张图片
根据上面的条形图,Apple iPhone 8 Plus(金色,64 GB)的排名最高。现在让我们来看看评分最高的iPhone的评论数量:

iphones = highest_rated["Product Name"].value_counts()
label = iphones.index
counts = highest_rated["Number Of Reviews"]
figure = px.bar(highest_rated, x=label, 
                y = counts, 
            title="Number of Reviews of Highest Rated iPhones")
figure.show()

使用Python进行iPhone销售分析_第2张图片
苹果iPhone 8 Plus(金色,64 GB)也是印度最受欢迎的iPhone之一,评论数量最多。现在让我们来看看iPhone的销售价格与其评分之间的关系:

figure = px.scatter(data_frame = data, x="Number Of Ratings",
                    y="Sale Price", size="Discount Percentage", 
                    trendline="ols", 
                    title="Relationship between Sale Price and Number of Ratings of iPhones")
figure.show()

使用Python进行iPhone销售分析_第3张图片
iPhone的销售价格与评分之间存在负线性关系。这意味着价格低的iPhone在印度的销量更高。现在让我们来看看iPhone的折扣百分比与评分数量之间的关系:

figure = px.scatter(data_frame = data, x="Number Of Ratings",
                    y="Discount Percentage", size="Sale Price", 
                    trendline="ols", 
                    title="Relationship between Discount Percentage and Number of Ratings of iPhones")
figure.show()

使用Python进行iPhone销售分析_第4张图片
iPhone的折扣百分比与评级数量之间存在线性关系。这意味着高折扣的iPhone在印度销售得更多。

总结

以上就是如何使用Python进行在印度的iPhone销售分析情况。这篇文章中关于iPhone在印度销售的一些要点是:

  • 苹果iPhone 8 Plus(金色,64GB)是印度最受欢迎的iPhone
  • 价格较低的iPhone在印度销量更高
  • 折扣高的iPhone在印度销售更多

你可能感兴趣的:(python,数据分析,python,数据分析)