贝叶斯学习

贝叶斯学习

文章目录

  • 贝叶斯学习
    • 相关概率知识
    • 朴素贝叶斯
    • 多维正态密度贝叶斯

贝叶斯学习主要是依靠先验概率来推出后验概率,然后更具后验概率去验证。其主流分为朴素贝叶斯和高斯分布下的贝叶斯估计。

相关概率知识

**先验概率:**指根据以往经验和分析。在实验或采样前就可以得到的概率。

**后验概率:**指某件事已经发生,想要计算这件事发生的原因是由某个因素引起的概率。

**联合概率:**指是事件同时发生的概率,例如现在A,B两个事件同时发生的概率,记为P(A,B)、P(A∩B)、P(AB)。
若A、B事件相互独立,则存在
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
条件概率:指一个事件发生后另一个事件发生的概率,一般情况下B表示某一个因素,A表示结果,P(A|B)表示在因素B的条件下A发生的概率,即由因求果,其计算公式如下:
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
若A、B事件相互独立,则存在
P ( B ∣ A ) = P ( A B ) P ( A ) = P ( A ) P ( B ) P ( A ) = P ( B ) P(B|A)=\frac{P(AB)}{P(A)}=\frac{P(A)P(B)}{P(A)}=P(B) P(BA)=P(A)P(AB)=P(A)P(A)P(B)=P(B)
全概率公式:
P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^nP(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi)
贝叶斯公式:
P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B ) P ( A ) = P ( A ∣ B i ) P ( B ) ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(B_i|A)=\frac{P(B_iA)}{P(A)}=\frac{P(A|B_i)P(B)}{P(A)}=\frac{P(A|B_i)P(B)}{\sum_{i=1}^nP(B_i)P(A|B_i)} P(BiA)=P(A)P(BiA)=P(A)P(ABi)P(B)=i=1nP(Bi)P(ABi)P(ABi)P(B)

高斯分布:

若随机变量 X X X满足 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),其中 μ \mu μ σ \sigma σ分别为均值与标准差
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2
标准差:
S = ∑ ( x i − x ‾ ) 2 m − 1 S=\sqrt{\frac{\sum (x_i-\overline{x})^2}{m-1}} S=m1(xix)2
协方差:
E = ∑ ( x i − x ‾ ) ( y i − y ‾ ) m − 1 E=\frac{\sum(x_i-\overline x)(y_i-\overline y)}{m-1} E=m1(xix)(yiy)
协方差矩阵:
[ E 11 E 12 ⋯ E 1 n E 21 E 22 ⋯ E 2 n ⋮ ⋮ ⋱ ⋮ E m 1 E m 2 ⋯ E m n ] \begin{bmatrix} E_{11}&E_{12}&{\cdots}&E_{1n}\\ E_{21}&E_{22}&{\cdots}&E_{2n}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ E_{m1}&E_{m2}&{\cdots}&E_{mn}\\ \end{bmatrix} E11E21Em1E12E22Em2E1nE2nEmn

朴素贝叶斯

对于 x i x_i xi离散样本的情况下,其中 D c D_c Dc为对样本 c c c的数目统计:
P ( c ) = ∣ ∣ D c ∣ ∣ ∣ ∣ D ∣ ∣ P(c)=\frac{||D_c||}{||D||} P(c)=∣∣D∣∣∣∣Dc∣∣

P ( x i ∣ c ) = ∣ D x i , c ∣ ∣ D c ∣ P(x_{i}|c)=\frac{|D_{x_i,c}|}{|D_c|} P(xic)=DcDxi,c

对于 x i x_i xi为连续样本的情况下:
P ( x i ∣ c ) = 1 2 π σ c , j e − ( x i − μ c ; i ) 2 2 σ c , i 2 P(x_i|c)=\frac{1}{\sqrt{2\pi}\sigma_{c,j}}e^{-\frac{(x_i-\mu_{c;i})^2}{2\sigma_{c,i}^2}} P(xic)=2π σc,j1e2σc,i2(xiμc;i)2
在对于多特征的样本,朴素贝叶斯假设各个特征独立,即特征A与B满足
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
其中 c c c为结果, x \pmb x x为特征
P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) ∝ P ( c ) P ( x ∣ c ) = P ( c ) Π i = 1 d P ( x i ∣ c ) P(c|\pmb x)=\frac{P(c)P(\pmb x|c)}{P(\pmb x)}\propto P(c)P(\pmb x|c)=P(c)\Pi_{i=1}^{d}P(x_i|c) P(cx)=P(x)P(c)P(xc)P(c)P(xc)=P(c)Πi=1dP(xic)
为了避免出现出现 P ( c ) = 0 P(c)=0 P(c)=0的情况,采用拉普拉斯平滑进行处理
P ( c ) = ∣ ∣ D c ∣ ∣ + 1 ∣ ∣ D ∣ ∣ + N     N 为类别数 P(c)=\frac{||D_c||+1}{||D||+N} \ \ \ N为类别数 P(c)=∣∣D∣∣+N∣∣Dc∣∣+1   N为类别数

P ( x i ∣ c ) = ∣ ∣ D c , i ∣ ∣ + 1 ∣ ∣ D c ∣ ∣ + N i     N i 为 x i 可能取的类别数 P(x_i |c)=\frac{||D_{c,i}||+1}{||D_c||+N_i} \ \ \ N_i为x_i可能取的类别数 P(xic)=∣∣Dc∣∣+Ni∣∣Dc,i∣∣+1   Nixi可能取的类别数

多维正态密度贝叶斯

多维正态分布的概率密度 N ∼ ( μ , Σ ) N\sim(\mu,\Sigma) N(μ,Σ) μ \mu μ Σ \Sigma Σ分别为正态分布的均值与协方差矩阵
P ( x ) = 1 ( 2 π ) d / 2 ∣ Σ ∣ e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) P(x)=\frac{1}{(2\pi)^{d/2}|\Sigma|}e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)} P(x)=(2π)d/2∣Σ∣1e21(xμ)TΣ1(xμ)
贝叶斯学习_第1张图片

贝叶斯学习_第2张图片

贝叶斯学习_第3张图片

贝叶斯学习_第4张图片

贝叶斯学习_第5张图片

贝叶斯学习_第6张图片

贝叶斯学习_第7张图片

贝叶斯学习_第8张图片

你可能感兴趣的:(机器学习,机器学习)