来源:GitHub - Yangzhangcst/RGBD-semantic-segmentation: A paper list of RGBD semantic segmentation (processing)
A paper list of RGBD semantic segmentation.
*Last updated: 2022/07/26
Update log
2020/May - update all of recent papers and make some diagram about history of RGBD semantic segmentation.
2020/July - update some recent papers (CVPR2020) of RGBD semantic segmentation.
2020/August - update some recent papers (ECCV2020) of RGBD semantic segmentation.
2020/October - update some recent papers (CVPR2020, WACV2020) of RGBD semantic segmentation.
2020/November - update some recent papers (ECCV2020, arXiv), the links of papers and codes for RGBD semantic segmentation.
2020/December - update some recent papers (PAMI, PRL, arXiv, ACCV) of RGBD semantic segmentation.
2021/February - update some recent papers (TMM, NeurIPS, arXiv) of RGBD semantic segmentation.
2021/April - update some recent papers (CVPR2021, ICRA2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2021/July - update some recent papers (CVPR2021, ICME2021, arXiv) of RGBD semantic segmentation.
2021/August - update some recent papers (IJCV, ICCV2021, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/January - update some recent papers (TITS, PR, IEEE SPL, arXiv) of RGBD semantic segmentation.
2022/March - update benchmark results on Cityscapes and ScanNet datasets.
2022/April - update some recent papers (CVPR, BMVC, IEEE TMM, arXiv) of RGBD semantic segmentation.
2022/May - update some recent papers of RGBD semantic segmentation.
2022/July - update some recent papers of RGBD semantic segmentation.
The papers related to datasets used mainly in natural/color image segmentation are as follows.
The papers related to metrics used mainly in RGBD semantic segmentation are as follows.
Speed is related to the hardware spec (e.g. CPU, GPU, RAM, etc), so it is hard to make an equal comparison. We select four indexes namely PixAcc, mAcc, mIoU, and f.w.IOU to make comparison. The closer the segmentation result is to the ground truth, the higher the above four indexes are.
Method | PixAcc | mAcc | mIoU | f.w.IOU | Input | Ref. from | Published | Year |
---|---|---|---|---|---|---|---|---|
POR | 59.1 | 28.4 | 29.1 | RGBD | CVPR | 2013 | ||
RGBD R-CNN | 60.3 | 35.1 | 31.3 | 47(in LSD-GF) | RGBD | ECCV | 2014 | |
DeconvNet | 69.9 | 56.4 | 42.7 | 56 | RGB | LSD-GF | ICCV | 2015 |
DeepLab | 68.7 | 46.9 | 36.8 | 52.5 | RGBD | STD2P | ICLR | 2015 |
CRF-RNN | 66.3 | 48.9 | 35.4 | 51 | RGBD | STD2P | ICCV | 2015 |
Multi-Scale CNN | 65.6 | 45.1 | 34.1 | 51.4 | RGB | LCSF-Deconv | ICCV | 2015 |
FCN | 65.4 | 46.1 | 34 | 49.5 | RGBD | LCSF-Deconv | CVPR | 2015 |
Mutex Constraints | 63.8 | 31.5 | 48.5 (in LSD-GF) | RGBD | ICCV | 2015 | ||
E2S2 | 58.1 | 52.9 | 31 | 44.2 | RGBD | STD2P | ECCV | 2016 |
BI-3000 | 58.9 | 39.3 | 27.7 | 43 | RGBD | STD2P | ECCV | 2016 |
BI-1000 | 57.7 | 37.8 | 27.1 | 41.9 | RGBD | STD2P | ECCV | 2016 |
LCSF-Deconv | 47.3 | RGBD | ECCV | 2016 | ||||
LSTM-CF | 49.4 | RGBD | ECCV | 2016 | ||||
CRF+RF+RFS | 73.8 | RGBD | PRL | 2016 | ||||
RDFNet-152 | 76 | 62.8 | 50.1 | RGBD | ICCV | 2017 | ||
SCN-ResNet152 | 49.6 | RGBD | ICCV | 2017 | ||||
RDFNet-50 | 74.8 | 60.4 | 47.7 | RGBD | ICCV | 2017 | ||
CFN(RefineNet) | 47.7 | RGBD | ICCV | 2017 | ||||
RefineNet-152 | 73.6 | 58.9 | 46.5 | RGB | CVPR | 2017 | ||
LSD-GF | 71.9 | 60.7 | 45.9 | 59.3 | RGBD | CVPR | 2017 | |
3D-GNN | 55.7 | 43.1 | RGBD | ICCV | 2017 | |||
DML-Res50 | 40.2 | RGB | IJCAI | 2017 | ||||
STD2P | 70.1 | 53.8 | 40.1 | 55.7 | RGBD | CVPR | 2017 | |
PBR-CNN | 33.2 | RGB | ICCBS | 2017 | ||||
B-SegNet | 68 | 45.8 | 32.4 | RGB | BMVC | 2017 | ||
FC-CRF | 63.1 | 39 | 29.5 | 48.4 | RGBD | TIP | 2017 | |
LCR | 55.6 | 31.7 | 21.8 | 39.9 | RGBD | ICIP | 2017 | |
SegNet | 54.1 | 30.5 | 21 | 38.5 | RGBD | LCR | TPAMI | 2017 |
D-Refine-152 | 74.1 | 59.5 | 47 | RGB | ICPR | 2018 | ||
TRL-ResNet50 | 76.2 | 56.3 | 46.4 | RGB | ECCV | 2018 | ||
D-CNN | 56.3 | 43.9 | RGBD | ECCV | 2018 | |||
RGBD-Geo | 70.3 | 51.7 | 41.2 | 54.2 | RGBD | MTA | 2018 | |
Context | 70 | 53.6 | 40.6 | RGB | TPAMI | 2018 | ||
DeepLab-LFOV | 70.3 | 49.6 | 39.4 | 54.7 | RGBD | STD2P | TPAMI | 2018 |
D-depth-reg | 66.7 | 46.3 | 34.8 | 50.6 | RGBD | PRL | 2018 | |
PU-Loop | 72.1 | 44.5 | RGB | CVPR | 2018 | |||
C-DCNN | 69 | 50.8 | 39.8 | RGB | TNNLS | 2018 | ||
GAD | 84.8 | 68.7 | 59.6 | RGB | CVPR | 2019 | ||
CTS-IM | 76.3 | 50.6 | RGBD | ICIP | 2019 | |||
PAP | 76.2 | 62.5 | 50.4 | RGB | CVPR | 2019 | ||
KIL-ResNet101 | 75.1 | 58.4 | 50.2 | RGB | ACPR | 2019 | ||
2.5D-Conv | 75.9 | 49.1 | RGBD | ICIP | 2019 | |||
ACNet | 48.3 | RGBD | ICIP | 2019 | ||||
3M2RNet | 76 | 63 | 48 | RGBD | SIC | 2019 | ||
FDNet-16s | 73.9 | 60.3 | 47.4 | RGB | AAAI | 2019 | ||
DMFNet | 74.4 | 59.3 | 46.8 | RGBD | IEEE Access | 2019 | ||
MMAF-Net-152 | 72.2 | 59.2 | 44.8 | RGBD | arXiv | 2019 | ||
RTJ-AA | 42 | RGB | ICRA | 2019 | ||||
JTRL-ResNet50 | 81.3 | 60.0 | 50.3 | RGB | TPAMI | 2019 | ||
3DN-Conv | 52.4 | 39.3 | RGB | 3DV | 2019 | |||
SGNet | 76.8 | 63.1 | 51 | RGBD | TIP | 2020 | ||
SCN-ResNet101 | 48.3 | RGBD | TCYB | 2020 | ||||
RefineNet-Res152-Pool4 | 74.4 | 59.6 | 47.6 | RGB | TPAMI | 2020 | ||
TSNet | 73.5 | 59.6 | 46.1 | RGBD | IEEE IS | 2020 | ||
PSD-ResNet50 | 77.0 | 58.6 | 51.0 | RGB | CVPR | 2020 | ||
Malleable 2.5D | 76.9 | 50.9 | RGBD | ECCV | 2020 | |||
BCMFP+SA-Gate | 77.9 | 52.4 | RGBD | ECCV | 2020 | |||
MTI-Net | 75.3 | 62.9 | 49.0 | RGB | ECCV | 2020 | ||
VCD+RedNet | 63.5 | 50.7 | RGBD | CVPR | 2020 | |||
VCD+ACNet | 64.4 | 51.9 | RGBD | CVPR | 2020 | |||
SANet | 75.9 | 50.7 | RGB | arXiv | 2020 | |||
Zig-Zag Net (ResNet152) | 77.0 | 64.0 | 51.2 | RGBD | TPAMI | 2020 | ||
MCN-DRM | 56.1 | 43.1 | RGBD | ICNSC | 2020 | |||
CANet | 76.6 | 63.8 | 51.2 | RGBD | ACCV | 2020 | ||
CEN(ResNet152) | 77.7 | 65.0 | 52.5 | RGBD | NeurIPS | 2020 | ||
ESANet | 50.5 | RGBD | ICRA | 2021 | ||||
LWM(ResNet152) | 81.46 | 65.24 | 51.51 | RGB | TMM | 2021 | ||
GLPNet(ResNet101) | 79.1 | 66.6 | 54.6 | RGBD | arXiv | 2021 | ||
ESOSD-Net(Xception-65) | 73.3 | 64.7 | 45.0 | RGB | arXiv | 2021 | ||
NANet(ResNet101) | 77.9 | 52.3 | RGBD | IEEE SPL | 2021 | |||
InverseForm | 78.1 | 53.1 | RGB | CVPR | 2021 | |||
FSFNet | 77.9 | 52.0 | RGBD | ICME | 2021 | |||
CSNet | 77.5 | 63.6 | 51.5 | RGBD | ISPRS JPRS | 2021 | ||
ShapeConv | 75.8 | 62.8 | 50.2 | 62.6 | RGBD | ICCV | 2021 | |
CI-Net | 72.7 | 42.6 | RGB | arXiv | 2021 | |||
RGBxD | 76.7 | 63.5 | 51.1 | RGBD | Neurocomput. | 2021 | ||
TCD(ResNet101) | 77.8 | 53.1 | RGBD | IEEE SPL | 2021 | |||
RAFNet-50 | 73.8 | 60.3 | 47.5 | RGBD | Displays | 2021 | ||
RTLNet | 77.7 | 53.1 | RGBD | IEEE SPL | 2021 | |||
H3S-Fuse | 78.3 | 53.5 | RGB | BMVC | 2021 | |||
EBANet | 76.82 | 51.51 | RGBD | ICCSIP | 2021 | |||
CANet(ResNet101) | 77.1 | 64.6 | 51.5 | RGBD | PR | 2022 | ||
ADSD(ResNet50) | 77.5 | 65.3 | 52.5 | RGBD | arXiv | 2022 | ||
InvPT | 53.56 | RGB | arXiv | 2022 | ||||
PGDENet | 78.1 | 66.7 | 53.7 | RGBD | IEEE TMM | 2022 | ||
CMX | 80.1 | 56.9 | RGBD | arXiv | 2022 | |||
RFNet | 80.1 | 64.7 | 53.5 | RGBD | IEEE TETCI | 2022 | ||
MTF | 79.0 | 66.9 | 54.2 | RGBD | CVPR | 2022 | ||
FRNet | 77.6 | 66.5 | 53.6 | RGBD | IEEE JSTSP | 2022 | ||
DRD | 51.0 | 38.2 | RGB | IEEE ICASSP | 2022 | |||
SAMD | 74.4 | 67.2 | 52.3 | 61.9 | RGBD | Neurocomput. | 2022 | |
BFFNet-152 | 47.5 | RGBD | IEEE ICSP | 2022 | ||||
MQTransformer | 49.18 | RGBD | arXiv | 2022 | ||||
GED | 75.9 | 62.4 | 49.4 | RGBD | MTA | 2022 | ||
LDF | 84.8 | 68.7 | 59.6 | RGB | MTA | 2022 | ||
PCGNet | 77.6 | 52.1 | RGBD | IEEE ICMEW | 2022 |
Method | PixAcc | mAcc | mIoU | f.w.IOU | Input | Ref. from | Published | Year |
---|---|---|---|---|---|---|---|---|
FCN | 68.2 | 38.4 | 27.4 | RGB | SegNet | CVPR | 2015 | |
DeconvNet | 66.1 | 32.3 | 22.6 | RGB | SegNet | ICCV | 2015 | |
IFCN | 77.7 | 55.5 | 42.7 | RGB | arXiv | 2016 | ||
CFN(RefineNet) | 48.1 | RGBD | ICCV | 2017 | ||||
RDFNet-152 | 81.5 | 60.1 | 47.7 | RGBD | ICCV | 2017 | ||
RefineNet-Res152 | 80.6 | 58.5 | 45.9 | RGB | CVPR | 2017 | ||
3D-GNN | 57 | 45.9 | RGBD | ICCV | 2017 | |||
DML-Res50 | 42.3 | RGB | IJCAI | 2017 | ||||
HP-SPS | 75.7 | 50.1 | 38 | RGB | BMVC | 2017 | ||
FuseNet | 76.3 | 48.3 | 37.3 | RGBD | ACCV | 2017 | ||
LRN | 72.5 | 46.8 | 33.1 | RGB | arXiv | 2017 | ||
SegNet | 72.6 | 44.8 | 31.8 | RGB | MMAF-Net-152 | TPAMI | 2017 | |
B-SegNet | 71.2 | 45.9 | 30.7 | RGB | BMVC | 2017 | ||
LSD-GF | 58 | RGBD | CVPR | 2017 | ||||
TRL-ResNet101 | 84.3 | 58.9 | 50.3 | RGB | ECCV | 2018 | ||
CCF-GMA | 81.4 | 60.3 | 47.1 | RGB | CVPR | 2018 | ||
D-Refine-152 | 80.8 | 58.9 | 46.3 | RGB | ICPR | 2018 | ||
Context | 78.4 | 53.4 | 42.3 | RGB | TPAMI | 2018 | ||
D-CNN | 53.5 | 42 | RGBD | ECCV | 2018 | |||
G-FRNet-Res101 | 75.3 | 47.5 | 36.9 | RGB | arXiv | 2018 | ||
DeepLab-LFOV | 71.9 | 42.2 | 32.1 | RGB | TPAMI | 2018 | ||
PU-Loop | 80.3 | 45.1 | RGB | CVPR | 2018 | |||
C-DCNN | 77.3 | 50 | 39.4 | RGB | TNNLS | 2018 | ||
GAD | 85.5 | 74.9 | 54.5 | RGB | CVPR | 2019 | ||
KIL-ResNet101 | 84.8 | 58 | 52 | RGB | ACPR | 2019 | ||
PAP | 83.8 | 58.4 | 50.5 | RGB | CVPR | 2019 | ||
3M2RNet | 83.1 | 63.5 | 49.8 | RGBD | SIC | 2019 | ||
CTS | 82.4 | 48.5 | RGBD | ICIP | 2019 | |||
2.5D-Conv | 82.4 | 48.2 | RGBD | ICIP | 2019 | |||
ACNet | 48.1 | RGBD | ICIP | 2019 | ||||
MMAF-Net-152 | 81 | 58.2 | 47 | RGBD | arXiv | 2019 | ||
LCR-RGBD | 42.4 | RGBD | CVPRW | 2019 | ||||
EFCN-8s | 76.9 | 53.5 | 40.7 | RGB | TIP | 2019 | ||
DSNet | 75.6 | 32.1 | RGB | ICASSP | 2019 | |||
JTRL-ResNet101 | 84.8 | 59.1 | 50.8 | RGB | TPAMI | 2019 | ||
SCN-ResNet152 | 50.7 | RGBD | TCYB | 2020 | ||||
SGNet | 81.8 | 60.9 | 48.5 | RGBD | TIP | 2020 | ||
CGBNet | 82.3 | 61.3 | 48.2 | RGB | TIP | 2020 | ||
CANet-ResNet101 | 81.9 | 47.7 | RGB | arXiv | 2020 | |||
RefineNet-Res152-Pool4 | 81.1 | 57.7 | 47 | RGB | TPAMI | 2020 | ||
PSD-ResNet50 | 84.0 | 57.3 | 50.6 | RGB | CVPR | 2020 | ||
BCMFP+SA-Gate | 82.5 | 49.4 | RGBD | ECCV | 2020 | |||
QGN | 82.4 | 45.4 | RGBD | WACV | 2020 | |||
VCD+RedNet | 62.9 | 50.3 | RGBD | CVPR | 2020 | |||
VCD+ACNet | 64.1 | 51.2 | RGBD | CVPR | 2020 | |||
SANet | 82.3 | 51.5 | RGB | arXiv | 2020 | |||
Zig-Zag Net (ResNet152) | 84.7 | 62.9 | 51.8 | RGBD | TPAMI | 2020 | ||
MCN-DRM | 54.6 | 42.8 | RGBD | ICNSC | 2020 | |||
CANet | 82.5 | 60.5 | 49.3 | RGBD | ACCV | 2020 | ||
CEN(ResNet152) | 83.5 | 63.2 | 51.1 | RGBD | NeurIPS | 2020 | ||
AdapNet++ | 38.4 | RGBD | IJCV | 2020 | ||||
ESANet | 48.3 | RGBD | ICRA | 2021 | ||||
LWM(ResNet152) | 82.65 | 70.21 | 53.12 | RGB | TMM | 2021 | ||
GLPNet(ResNet101) | 82.8 | 63.3 | 51.2 | RGBD | arXiv | 2021 | ||
NANet(ResNet101) | 82.3 | 48.8 | RGBD | IEEE SPL | 2021 | |||
FSFNet | 81.8 | 50.6 | RGBD | ICME | 2021 | |||
CSNet | 82.0 | 63.1 | 52.8 | RGBD | ISPRS JPRS | 2021 | ||
ShapeConv(ResNet101) | 82.0 | 58.5 | 47.6 | 71.2 | RGBD | ICCV | 2021 | |
CI-Net | 80.7 | 44.3 | RGB | arXiv | 2021 | |||
RGBxD | 81.7 | 58.8 | 47.7 | RGBD | Neurocomput. | 2021 | ||
TCD(ResNet101) | 83.1 | 49.5 | RGBD | IEEE SPL | 2021 | |||
RAFNet-50 | 81.3 | 59.4 | 47.2 | RGBD | Displays | 2021 | ||
GRBNet | 81.3 | 45.7 | RGBD | TITS | 2021 | |||
RTLNet | 81.3 | 45.7 | RGBD | IEEE SPL | 2021 | |||
CANet(ResNet101) | 85.2 | 50.6 | RGBD | PR | 2022 | |||
ADSD(ResNet50) | 81.8 | 62.1 | 49.6 | RGBD | arXiv | 2022 | ||
PGDENet | 87.7 | 61.7 | 51.0 | RGBD | IEEE TMM | 2022 | ||
CMX | 83.3 | 51.1 | RGBD | IEEE TMM | 2022 | |||
RFNet | 87.3 | 59.0 | 50.7 | RGBD | IEEE TETCI | 2022 | ||
MTF | 84.7 | 64.1 | 53.0 | RGBD | CVPR | 2022 | ||
FRNet | 87.4 | 62.2 | 51.8 | RGBD | IEEE JSTSP | 2022 | ||
DRD | 48.9 | 39.5 | RGB | IEEE ICASSP | 2022 | |||
SAMD | 63.4 | RGBD | Neurocomput. | 2022 | ||||
BFFNet-152 | 86.7 | 44.6 | RGBD | IEEE ICSP | 2022 | |||
LDF | 85.5 | 68.3 | 47.5 | RGB | MTA | 2022 | ||
PCGNet | 82.1 | 49.0 | RGBD | IEEE ICMEW | 2022 |
Method | PixAcc | mAcc | mIoU | f.w.IOU | Input | Ref. from | Published | Year |
---|---|---|---|---|---|---|---|---|
Deeplab | 64.3 | 46.7 | 35.5 | 48.5 | RGBD | MMAF-Net-152 | ICLR | 2015 |
D-CNN | 65.4 | 35.9 | RGBD | CMX | ECCV | 2018 | ||
DeepLab-LFOV | 88.0 | 42.2 | 69.8 | RGB | PU-Loop | TPAMI | 2018 | |
D-CNN | 65.4 | 55.5 | 39.5 | 49.9 | RGBD | ECCV | 2018 | |
PU-Loop | 91.0 | 76.5 | RGB | CVPR | 2018 | |||
MMAF-Net-152 | 76.5 | 62.3 | 52.9 | RGBD | arXiv | 2019 | ||
3M2RNet | 79.8 | 75.2 | 63 | RGBD | SIC | 2019 | ||
ShapeConv | 82.7 | 60.6 | RGBD | CMX | ICCV | 2021 | ||
CMX | 82.6 | 62.1 | RGBD | arXiv | 2022 |
Benchmark Suite – Cityscapes Dataset
Benchmark Results - ScanNet Benchmark (2D Semantic label benchmark)