atcoder ABC237-E Skiing

atcoder ABC237-E Skiing

传送门

这题把一个点到另外一个点的开心值变为这条边的权值,就可以化为求最大路。因为有负边权,所以要用 S P F A SPFA SPFA,但 S P F A SPFA SPFA这玄学的时间复杂度,会 w a wa wa一个点,就很烦。

atcoder ABC237-E Skiing_第1张图片

我们作一个图,如下:

atcoder ABC237-E Skiing_第2张图片

我们把下降的距离设为 d o w n down down,把上升距离的设为 u p up up,这里的 u p up up d o w n down down为真实距离。

所以不难发现此式:

h x + u p − d o w n = h y h_x+up-down=h_y hx+updown=hy

h x − h y + u p = d o w n h_x-hy+up=down hxhy+up=down

又开心值计算公式为:

d o w n − 2 u p down-2up down2up

d o w n down down带入为:

h x − h y + u p − 2 u p = h x − h y − u p h_x-h_y+up-2up=h_x-h_y-up hxhy+up2up=hxhyup

所以我们可以把上升的边权换为 u p up up,下降的边权换为0。

用堆优化DIJ来求一个最短路,而到每个点的开心值就是 h x − h y − d i s y h_x-h_y-dis_y hxhydisy

因为你去到某个点的开心值为正,那么回去1号点的开心值就一定不为正。

CODE
#include 
using namespace std;

#define ll long long

const int maxn=2*1e5+5;

struct node
{
    ll to,nxt,val;
}edge[maxn*2];

ll INF=1e18;

ll n,m,tot,ans;
ll h[maxn],head[maxn],dis[maxn],vis[maxn];

priority_queue< pair<int,int> >q;

void add(ll x,ll y,ll z)
{
    ++tot;
    edge[tot].to=y;
    edge[tot].val=z;
    edge[tot].nxt=head[x];
    head[x]=tot;
}
void dij()
{
    for(int i=1;i<=n;i++) dis[i]=INF;
    dis[1]=0;
    q.push({-dis[1],1});
    for(int i=1;i<=n;i++)
    {
        if(q.empty()==1) return ;
        while(vis[q.top().second])//堆优化
        {
            q.pop();
        }
        vis[q.top().second]=1;
        pair<int,int> k=q.top();
        q.pop();
        k.first=-k.first;
        ans=max(ans,h[1]-h[k.second]-dis[k.second]);
        for(int j=head[k.second];j;j=edge[j].nxt)
        {
            ll v=edge[j].to;
            if(dis[v]>dis[k.second]+edge[j].val)
            {
                dis[v]=dis[k.second]+edge[j].val;
                q.push({-dis[v],v});
            }
        }
    }
}

int main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&h[i]);
    }
    for(int i=1;i<=m;i++)//初始化图
    {
        ll x,y;
        scanf("%lld%lld",&x,&y);
        add(x,y,max((long long)0,h[y]-h[x]));
        add(y,x,max((long long)0,h[x]-h[y]));
    }
    dij();
    printf("%lld",ans);
}

你可能感兴趣的:(atcoder题解,图论,算法)