算法通关村第二关|白银|链表反转拓展【持续更新】

1.指定区间反转

1.1 头插法:将区间内遍历到的结点插入到起始处之前。

public ListNode reverseBetween(ListNode head, int left, int right) {
	ListNode dummyNode = new ListNode(-1);
    dummyNode.next = head;
    ListNode pre = dummyNode;
    // 将pre移动到区间的前一位,pre.next指向每次遍历到的需要插入到起始处的结点
    for (int i = 0; i < left - 1; i++) {
        pre = pre.next;
    }
    // cur负责遍历
    ListNode cur = pre.next;
    // next存储遍历到的结点
    ListNode next;
    for (int i = 0; i < right - left; i++) {
        //存储遍历到的结点cur.next
        next = cur.next;
        //将cur.next向后移动,下次循环继续遍历
        cur.next = next.next;
        //让遍历到的结点指向起始处的结点
        next.next = pre.next;
        //pre指向新的起始处
        pre.next = next;
    }
    return dummyNode.next;
}

1.2 穿针引线法:找到需要裁切的地方,将子链表整体反转,然后再缝到切开的地方。

public ListNode reverseBetween(ListNode head, int left, int right){
	ListNode dummyNode = new ListNode(-1);
    dummyNode.next = head;
    ListNode pre = dummyNode;
    // 找 left 结点的前一个结点
    for (int i = 0; i < left - 1; i++) {
        pre = pre.next;
    }
    // 找 right 结点
    ListNode rightNode = pre;
    for (int i = 0; i < right - left + 1; i++) {
        rightNode = rightNode.next;
    }
    // 切割子链表
	ListNode leftNode = pre.next;
    ListNode succ = rightNode.next;
    rightNode.next = null;
    // 反转链表
    reverseList(leftNode);
    // 拼接
    pre.next = rightNode;
    leftNode.next = succ;
    return dummyNode.next;
}
// 反转链表算法
public ListNode reverseList(ListNode head) {
        ListNode prev = null;
        ListNode curr = head;
        while(curr != null){
            ListNode next = curr.next;
            
            // 这里对链表的结构进行了更改
            // 所以不需要返回值,但是上面的leftNode结构已经更改了
            curr.next = prev;
            
            prev = curr;
            curr = next;
        }
        return prev;
    }
}

2.两两交换链表中的节点

捋清楚成对交换结点时的指针指向即可。

public ListNode swapPairs(ListNode head) {
	ListNode dummyHead = new ListNode(0);
	dummyHead.next = head;
	ListNode temp = dummyHead;
	while (temp.next != null && temp.next.next != null) {
        ListNode node1 = temp.next;
        ListNode node2 = temp.next.next;
        temp.next = node2;
        node1.next = node2.next;
        node2.next = node1;
        temp = node1;
    }
	return dummyHead.next;
}

3.单链表加1

3.1 基于栈实现。

public ListNode plusOne(ListNode head) {
	Stack<Integer> stack = new Stack();
	while (head != null) {
        stack.push(head.val);
        head = head.next;
    }
	int carry = 0;
	ListNode dummy = new ListNode(0);
	// 本题要加1,所以设置了adder为1
	int adder = 1;
	while (!stack.empty() || carry > 0) {
        int digit = stack.empty() ? 0 : stack.pop();
        int sum = digit + carry + adder;
        carry = sum / 10;
        sum = sum % 10;
        ListNode cur = new ListNode(sum);
        cur.next = dummy.next;
        dummy.next = cur;
        //加一次以后adder就可以置0了
        adder = 0;
    }
	return dummy.next;
}

3.2 链表反转实现。【持续更新】


4.链表加法

4.1 栈实现:栈顶都是两个数的最低位,所以可以一起弹出。

public ListNode addInListByStack(ListNode head1, listNode head2) {
	Stack<ListNode> stack1 = new Stack<>();
    Stack<ListNode> stack2 = new Stack<>();
    while (head1 != null) {
        stack1.push(head1);
        head1 = head1.next;
    }
    while (head2 != null) {
        stack2.push(head2);
        head2 = head2.next;
    }
    ListNode newHead = new ListNode(-1);
    int carry = 0;
    while (!stack1.empty() || !stack2.empty() || carry != 0) {
        ListNode a = new ListNode(0);
        ListNode b = new ListNode(0);
        if (!stack1.empty()) {
            a = stack1.pop();
        }
        if (!stack2.empty()) {
            b = stack2.pop();
        }
        int get_sum = a.val + b.val + carry;
        int ans = get_sum % 10;
        carry = get_sum / 10;
        ListNode cur = new ListNode(ans);
        cur.next = newHead.next;
        newHead.next = cur;
    }
    return newHead.next;
}

4.2 链表反转实现。

public class Solution {
    public ListNode addInList(ListNode head1, ListNode head2) {
        head1 = reverse(head1);
        head2 = reverse(head2);
        ListNode head = new ListNode(-1);
        ListNode cur = head;
        int carry = 0;
        while (head1 != null || head2 != null || carry != 0) {
            int sum = carry;
            if (head1 != null) {
                sum += head1.val;
                head1 = head1.next;
            }
            if (head2 != null) {
                sum != head2.val;
                head2 = head2.next;
            }
            cur.next = new ListNode(sum % 10);
            carry = sum / 10;
            cur = cur.next;
        }
        return reverse(head.next);
    }

    // 链表反转方法
    public ListNode reverse(ListNode head){
        ListNode cur = head;
        ListNode pre = null;
        while (cur != null) {
            ListNode temp = cur.next;
            cur.next = pre;
            pre = cur;
            cur = temp;
        }
        return pre;
    }
}

4.3 链表减法:【持续更新】。


5.再论链表的回文序列问题

书接上回,可以使用栈或者链表反转来做。

public boolean isPalindrome(ListNode head) {
	if (head == null || head.next == null) {
        return true;
	}
	ListNode slow = head, fast = head;
	ListNode pre = head, prepre = null;
	while (fast != null && fast.next != null) {
        pre = slow;
        slow = slow.next;
        fast = fast.next.next;
        pre.next = prepre;
        prepre = pre;
    }
	if (fast != null) {
    	slow = slow.next;
    }
	while (pre != null && slow != null) {
        if (pre.val != slow.val) {
            return false;
        }
        pre = pre.next;
        slow = slow.next;
    }
	return true;
}

如果对您有帮助,请点赞关注支持我,谢谢!❤
如有错误或者不足之处,敬请指正!❤

你可能感兴趣的:(不易,算法通关村,算法,链表,java)