目录
1 重点概念
2 树
3 二叉树
1.1 结点概念
结点是数据结构中的基础,是构成复杂数据结构的基本组成单位。
1.2 树结点声明
本系列文章中提及的结点专指树的结点。
2.1 定义
树(Tree)是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
1)有且仅有一个特定的称为根(Root)的结点;
2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、......、Tn,其中每一个集合本身又是一棵树,并且称为根的子树。
此外,树的定义还需要强调以下两点:
1)n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点。
2)m>0时,子树的个数没有限制,但它们一定是互不相交的。
示例树:
图2.1为一棵普通的树:
由树的定义可以看出,树的定义使用了递归的方式。递归在树的学习过程中起着重要作用,如果对于递归不是十分了解,建议先看看递归算法。
2.2 结点的度
结点拥有的子树数目称为结点的度。
图2.2中标注了图2.1所示树的各个结点的度。
2.3 结点关系
结点子树的根结点为该结点的孩子结点。相应该结点称为孩子结点的双亲结点。
图2.2中,A为B的双亲结点,B为A的孩子结点。
同一个双亲结点的孩子结点之间互称兄弟结点。
图2.2中,结点B与结点C互为兄弟结点。
2.4 结点层次
从根开始定义起,根为第一层,根的孩子为第二层,以此类推。
图2.3表示了图2.1所示树的层次关系
2.5 树的深度
树中结点的最大层次数称为树的深度或高度。图2.1所示树的深度为4。
3.1 定义
二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。
图3.1展示了一棵普通二叉树:
3.2 二叉树特点
由二叉树定义以及图示分析得出二叉树有以下特点:
1)每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。
2)左子树和右子树是有顺序的,次序不能任意颠倒。
3)即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。
3.3 二叉树性质
1)在二叉树的第i层上最多有2i-1 个节点 。(i>=1)
2)二叉树中如果深度为k,那么最多有2k-1个节点。(k>=1)
3)n0=n2+1 n0表示度数为0的节点数,n2表示度数为2的节点数。
4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。
5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:
(1) 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
(2) 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
(3) 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。
3.4 斜树
斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。
3.5 满二叉树
满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点有:
1)叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
2)非叶子结点的度一定是2。
3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数 最多。
3.6 完全二叉树
完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
图3.5展示一棵完全二叉树
特点:
1)叶子结点只能出现在最下层和次下层。
2)最下层的叶子结点集中在树的左部。
3)倒数第二层若存在叶子结点,一定在右部连续位置。
4)如果结点度为1,则该结点只有左孩子,即没有右子树。
5)同样结点数目的二叉树,完全二叉树深度最小。
注:满二叉树一定是完全二叉树,但反过来不一定成立。
3.7 二叉树的存储结构
3.7.1 顺序存储
二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。
图3.6所示的一棵完全二叉树采用顺序存储方式,如图3.7表示:
由图3.7可以看出,当二叉树为完全二叉树时,结点数刚好填满数组。
那么当二叉树不为完全二叉树时,采用顺序存储形式如何呢?例如:对于图3.8描述的二叉树:
其中浅色结点表示结点不存在。那么图3.8所示的二叉树的顺序存储结构如图3.9所示:
其中,∧表示数组中此位置没有存储结点。此时可以发现,顺序存储结构中已经出现了空间浪费的情况。
对于这种右斜树极端情况,采用顺序存储的方式是十分浪费空间的。因此,顺序存储一般适用于完全二叉树。
3.7.2 二叉链表
既然顺序存储不能满足二叉树的存储需求,那么考虑采用链式存储。由二叉树定义可知,二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针域。表示方式如图3.11所示:
定义结点代码:
typedef struct BiTNode{
TElemType data;//数据
struct BiTNode *lchild, *rchild;//左右孩子指针
} BiTNode, *BiTree;
则图3.6所示的二叉树可以采用图3.12表示。
图3.12中采用一种链表结构存储二叉树,这种链表称为二叉链表。
3.8 二叉树遍历
二叉树的遍历一个重点考查的知识点。
3.8.1 定义
二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。
二叉树的访问次序可以分为四种:前序遍历,中序遍历,后序遍历,层序遍历
方法见:https://www.bilibili.com/video/BV16b411h7PH/?spm_id_from=333.788.videocard.4
3.8.2 前序遍历
前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。
二叉树访问如下:想象成5个3节点的二叉树,依次遍历,依次填充
根左右—— A B C
根左右—— A B D E C F G
根左右—— ABDHIEJCFG
所示二叉树的前序遍历输出为:
ABDHIEJCFG
3.8.3 中序遍历
中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。
所示二叉树中序访问如下:想象成5个3节点的二叉树,依次遍历,依次填充
左根右—— B A C
左根右—— D B E A F C G
左根右—— HDIBJEAFCG
所示二叉树的中序遍历输出为:
HDIBJEAFCG
3.8.4 后序遍历
后序遍历就是从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左在向右的方向访问。
所示二叉树后序访问如下:
左右根—— B C A
左右根—— D E B F G C A
左右根—— HIDJEBFGCA
所示二叉树的后序遍历输出为:
HIDJEBFGCA
3.8.5 层次遍历
层次遍历就是按照树的层次自上而下的遍历二叉树。针对所示二叉树的层次遍历结果为:
ABCDEFGHIJ
3.8.6 遍历常考考点
对于二叉树的遍历有一类典型题型。
1)已知前序遍历序列和中序遍历序列,确定一棵二叉树。
例题:若一棵二叉树的前序遍历为ABCDEF,中序遍历为CBAEDF,请画出这棵二叉树。
分析:前序遍历第一个输出结点为根结点,故A为根结点。早中序遍历中根结点处于左右子树结点中间,故结点A的左子树中结点有CB,右子树中结点有EDF。
作者:MrHorse1992
链接:https://www.jianshu.com/p/bf73c8d50dc2
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。