动态规划:力扣

今天的力扣题是一个有点难度的动态规划习题:1911. 最大子序列交替和

因为之前没有学过动态规划的相关知识,所以在这里简单记录一下dp的思路和解题过程。

先从简单的习题出发:70 爬楼梯
题目描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

解:
n=1,1
n=2,2
n=3,3
1、定义一个一维数组来记录不同楼层的状态
确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
2、确定递推公式
从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。
3、dp数组如何初始化
dp[1] = 1,dp[2] = 2
4、确定遍历顺序
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
5、举例推导dp数组

class Solution:
    def climbStairs(self, n: int) -> int:
        dp =[0]*(n+1)
        dp[0]=1
        dp[1]=1
        for i in range(2,n+1):
            dp[i]=dp[i-1]+dp[i-2]
        return dp[n]

再来一个简单一点的题:198打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

解:
1、定义一个一维数组来记录不同楼层的状态
确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
2、确定递推公式
从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。
3、dp数组如何初始化
dp[1] = 1,dp[2] = 2
4、确定遍历顺序
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
5、举例推导dp数组

你可能感兴趣的:(动态规划,leetcode,算法)