大数据学习(五)Mapreduce详解

一、什么是mapreduce

简单明了来讲,Mapreduce就是一个分布式运算程序的编程框架

二、mapreduce组成

MapReduce包含四个组成部分,分别为Client,JobTracker,TaskTracker,Task:

1.Client:

每一个Job都会在用户端通过Client类将应用程序以及参数配置Configuration打包成Jar文件存储在HDFS,并把路径提交到JobTracker的master服务,然后由master创建每一个Task(即MapTask和ReduceTask),将它们分发到各个TaskTracker服务中去执行。

2.JobTracker:

JobTracker负责资源监控和作业调度。JobTracker监控所有的TaskTracker与job的健康状况,一旦发现失败,就将相应的任务转移到其它节点;同时JobTracker会跟踪任务的执行进度,资源使用量等信息,并将这些信息告诉任务调度器,而调度器会在资源出现空闲时,选择合适的任务使用这些资源。

3.TaskTracker

TaskTracker会周期性地通过HeartBeat将本节点上资源的使用情况和任务的运行进度汇报给JobTracker,同时执行JobTracker发送过来的命令并执行相应的操作(如启动新任务,杀死任务等)。TaskTracker使用“slot”等量划分本节点上的资源量。“slot”代表计算资源(cpu,内存等) 。一个Task获取到一个slot之后才有机会运行,而Hadoop调度器的作用就是将各个TaskTracker上的空闲slot分配给Task使用。slot分为MapSlot和ReduceSlot两种,分别提供MapTask和ReduceTask使用。TaskTracker通过slot数目(可配置参数)限定Task的并发度。

4. Task 

Task分为MapTask和Reduce Task两种,均由TaskTracker启动。HDFS以固定大小的block为基本单位存储数据,而对于MapReduce而言,其处理单位是split。split是一个逻辑概念,它只包含一些元数据信息,比如数据起始位置、数据长度、数据所在节点等。它的划分方法完全由用户自己决定。但需要注意的是,split的多少决定了MapTask的数目,因为每一个split只会交给一个MapTask处理。

三、map和reduce过程

MapTask的执行过程

Map Task 先将对应的split迭代解析成一个个key-value对,依次调用用户自定义的map()函数进行处理,最终将临时结果存放到本地磁盘上。其中,临时数据被分成若干个partition,每个partition将被一个Reduce Task处理。


Reduce Task 的执行过程

从远程节点上读取Map Task中间结果(称为“Shuffle 阶段”),按照 key 对 key-value 对进行排序(称为 “Sort 阶段”).依次读取< key, value list >,调用用户自定义的Reduce函数处理,并将最终结果存到HDFS上(称为“Reduce阶段”)

部分内容转载于https://blog.csdn.net/u010176083/article/details/53269317

你可能感兴趣的:(mapreduce,大数据,hadoop)