iOS视觉-- (11) OpenGL ES+GLSL实现大眼和瘦脸

前面我们学过摄像头的渲染、单滤镜、多滤镜的处理的流程。接下来要学习的是大眼和瘦脸的技能了。这里会使用到人脸识别的技术,刚开始打算用的是Vision原生框架来做,无奈,脱离时代的iPhone6太卡了。难当次重任,后面使用了第三方框架。测试版可以随便玩玩。真的不错哦。效率很高,特征点106个。还是OK的。
借鉴博客:iOS原生框架Vision实现瘦脸大眼特效、仿抖音特效相机之大眼瘦脸
本文达成效果如下图:

效果图

106个特征点如下图

特征点
原理解析

主要是以下3点,具体请前往参考博客和原理解析。

  • 1.圆内放大
  • 2.圆内缩小
  • 3.向某一点拉伸

用一张gif图来概括上面的内容,也是本文章最终的达成的效果,如开头所展示的效果图

经过前面我们了解了

  • 日常开发中OpenGL开发流程
  • 1.设置图层
  • 2.设置图形上下文
  • 3.设置渲染缓冲区(renderBuffer)
  • 4.设置帧缓冲区(frameBuffer)
  • 5.编译、链接着色器(shader)
  • 6.设置VBO (Vertex Buffer Objects)
  • 7.设置纹理
  • 8.渲染

这些基本步骤大致是不变的。这章是摄像头渲染+"多滤镜"渲染思想的结合提现。内容是感觉是增加了,但是实际的开发流程还是一样的。接下来让我们进入正题。
经过分析我们主要有以下3个工作:


需求图

核心代码:

    ///绘制面部特征点
    func renderFacePoint() {
        //MARK: - 1.绘制摄像头
        //使用着色器
        glUseProgram(renderProgram)
        //绑定frameBuffer
        glBindFramebuffer(GLenum(GL_FRAMEBUFFER), facePointFrameBuffer)
        
        //设置清屏颜色
        glClearColor(0.0, 0.0, 0.0, 1.0)
        //清除屏幕
        glClear(GLbitfield(GL_COLOR_BUFFER_BIT))
        
        //1.设置视口大小
        let scale = self.contentScaleFactor
        glViewport(0, 0, GLsizei(self.frame.size.width * scale), GLsizei(self.frame.size.height * scale))
        
       

#warning("注意⚠️:想要获取shader里面的变量,这里要记住要在glLinkProgram后面、后面、后面")
        //----处理顶点数据-------
        //将顶点数据通过renderProgram中的传递到顶点着色程序的position
        /*1.glGetAttribLocation,用来获取vertex attribute的入口的.
          2.告诉OpenGL ES,通过glEnableVertexAttribArray,
          3.最后数据是通过glVertexAttribPointer传递过去的。
         */
        //注意:第二参数字符串必须和shaderv.vsh中的输入变量:position保持一致
        let position = glGetAttribLocation(renderProgram, "position")

        //设置合适的格式从buffer里面读取数据
        glEnableVertexAttribArray(GLuint(position))

        //设置读取方式
        //参数1:index,顶点数据的索引
        //参数2:size,每个顶点属性的组件数量,1,2,3,或者4.默认初始值是4.
        //参数3:type,数据中的每个组件的类型,常用的有GL_FLOAT,GL_BYTE,GL_SHORT。默认初始值为GL_FLOAT
        //参数4:normalized,固定点数据值是否应该归一化,或者直接转换为固定值。(GL_FALSE)
        //参数5:stride,连续顶点属性之间的偏移量,默认为0;
        //参数6:指定一个指针,指向数组中的第一个顶点属性的第一个组件。默认为0
//        glVertexAttribPointer(GLuint(position), 3, GLenum(GL_FLOAT), GLboolean(GL_FALSE), GLsizei(MemoryLayout.size * 5), UnsafeRawPointer(bitPattern: MemoryLayout.size * 0))
        glVertexAttribPointer(GLuint(position), 3, GLenum(GL_FLOAT), GLboolean(GL_FALSE), 0, standardVertex)


        //----处理纹理数据-------
        //1.glGetAttribLocation,用来获取vertex attribute的入口的.
        //注意:第二参数字符串必须和shaderv.vsh中的输入变量:textCoordinate保持一致
        let textCoord = glGetAttribLocation(renderProgram, "textCoordinate")

        //设置合适的格式从buffer里面读取数据
        glEnableVertexAttribArray(GLuint(textCoord))

        //3.设置读取方式
        //参数1:index,顶点数据的索引
        //参数2:size,每个顶点属性的组件数量,1,2,3,或者4.默认初始值是4.
        //参数3:type,数据中的每个组件的类型,常用的有GL_FLOAT,GL_BYTE,GL_SHORT。默认初始值为GL_FLOAT
        //参数4:normalized,固定点数据值是否应该归一化,或者直接转换为固定值。(GL_FALSE)
        //参数5:stride,连续顶点属性之间的偏移量,默认为0;
        //参数6:指定一个指针,指向数组中的第一个顶点属性的第一个组件。默认为0
//        glVertexAttribPointer(GLuint(textCoord), 2, GLenum(GL_FLOAT), GLboolean(GL_FALSE), GLsizei(MemoryLayout.size * 5), UnsafeRawPointer(bitPattern: MemoryLayout.size * 3))
        glVertexAttribPointer(GLuint(textCoord), 2, GLenum(GL_FLOAT), GLboolean(GL_FALSE), 0, standardVerticalInvertFragment)

        
        //法一:使用 CVOpenGLESTexture进行加载,打开下面
        glActiveTexture(GLenum(GL_TEXTURE0))
        glUniform1i(glGetUniformLocation(self.renderProgram, "colorMap"), 0)
        
        //法二:使用 glTexImage2D 方式加载,打开下面
//        glActiveTexture(GLenum(GL_TEXTURE1))
//        glBindTexture(GLenum(GL_TEXTURE_2D), originalTexture)
//        glUniform1i(glGetUniformLocation(self.renderProgram, "colorMap"), 1) //单个纹理可以不用设置

        glDrawArrays(GLenum(GL_TRIANGLES), 0, 6)
        
        
        //MARK: - 2.绘制面部特征点
        if drawLandMark {
            //注意⚠️:不能清屏。否则看不到照相机画面
            //        glClearColor(0.0, 0.0, 0.0, 1.0)
            //清除屏幕
            //        glClear(GLbitfield(GL_COLOR_BUFFER_BIT))
            //1.设置视口大小
            glViewport(0, 0, GLsizei(self.frame.size.width * scale), GLsizei(self.frame.size.height * scale))
            
            //使用着色器
            glUseProgram(faceProgram)
            
            for faceInfo in FaceDetector.shareInstance().faceModels {
                
                var tempPoint: [GLfloat] = [GLfloat].init(repeating: 0, count: faceInfo.landmarks.count * 3)
                var indices: [GLubyte] = [GLubyte].init(repeating: 0, count: faceInfo.landmarks.count)
                for i in 0...size * 3), UnsafeRawPointer(bitPattern: MemoryLayout.size * 0))
                glVertexAttribPointer(GLuint(position), 3, GLenum(GL_FLOAT), GLboolean(GL_FALSE), 0, tempPoint)
                
                
                let lineWidth = faceInfo.bounds.size.width / CGFloat(self.frame.width * scale)
                let sizeScaleUniform = glGetUniformLocation(self.faceProgram, "sizeScale")
                glUniform1f(GLint(sizeScaleUniform), GLfloat(lineWidth * 20))
                
                //            var scaleMatrix = GLKMatrix4Identity//GLKMatrix4Scale(GLKMatrix4Identity, 1/Float(lineWidth), 1/Float(lineWidth), 0)
                //            let scaleMatrixUniform = shader.uniformIndex("scaleMatrix")!
                //            glUniformMatrix4fv(GLint(scaleMatrixUniform), 1, GLboolean(GL_FALSE), &scaleMatrix.m.0)
                
                glDrawElements(GLenum(GL_POINTS), GLsizei(indices.count), GLenum(GL_UNSIGNED_BYTE), indices)
            }
        }
        
       

        
        
        //MARK: - 3.绘制纹理完毕,开始瘦脸
        renderThinFace()
    }

//MARK: - 绘制瘦脸
    ///绘制瘦脸
    func renderThinFace() {
        //使用着色器
        glUseProgram(thinFaceProgram)
        //绑定frameBuffer
        glBindFramebuffer(GLenum(GL_FRAMEBUFFER), thinFaceFrameBuffer)
        
        let faceInfo = FaceDetector.shareInstance().oneFace
        if faceInfo.landmarks.count == 0 {
            glUniform1i(hasFaceUniform, 0)
            //3.绘制纹理完毕,开始渲染到屏幕上
            displayRenderToScreen(facePointTexture)
            return
        }
        glClearColor(0.0, 0.0, 0.0, 1.0)
        //清除屏幕
        glClear(GLbitfield(GL_COLOR_BUFFER_BIT))
        
        //1.设置视口大小
        let scale = self.contentScaleFactor
        glViewport(0, 0, GLsizei(self.frame.size.width * scale), GLsizei(self.frame.size.height * scale))
        
        hasFaceUniform = glGetUniformLocation(self.thinFaceProgram, "hasFace")
        aspectRatioUniform = glGetUniformLocation(self.thinFaceProgram, "aspectRatio")
        facePointsUniform = glGetUniformLocation(self.thinFaceProgram, "facePoints")
        thinFaceDeltaUniform = glGetUniformLocation(self.thinFaceProgram, "thinFaceDelta")
        bigEyeDeltaUniform = glGetUniformLocation(self.thinFaceProgram, "bigEyeDelta")
        
        glUniform1i(hasFaceUniform, 1)
        let aspect: Float = Float(inputTextureW / inputTextureH)
        glUniform1f(aspectRatioUniform, aspect)
        
        glUniform1f(thinFaceDeltaUniform, thinFaceDelta)
        glUniform1f(bigEyeDeltaUniform, bigEyeDelta)
        
        let size = 106 * 2
        var tempPoint: [GLfloat] = [GLfloat].init(repeating: 0, count: size)
        var index = 0
        for i in 0...size * 5), UnsafeRawPointer(bitPattern: MemoryLayout.size * 0))
        glVertexAttribPointer(GLuint(position), 3, GLenum(GL_FLOAT), GLboolean(GL_FALSE), 0, standardVertex)


        //----处理纹理数据-------
        //1.glGetAttribLocation,用来获取vertex attribute的入口的.
        //注意:第二参数字符串必须和shaderv.vsh中的输入变量:textCoordinate保持一致
        let textCoord = glGetAttribLocation(displayProgram, "textCoordinate")

        //设置合适的格式从buffer里面读取数据
        glEnableVertexAttribArray(GLuint(textCoord))

        //3.设置读取方式
        //参数1:index,顶点数据的索引
        //参数2:size,每个顶点属性的组件数量,1,2,3,或者4.默认初始值是4.
        //参数3:type,数据中的每个组件的类型,常用的有GL_FLOAT,GL_BYTE,GL_SHORT。默认初始值为GL_FLOAT
        //参数4:normalized,固定点数据值是否应该归一化,或者直接转换为固定值。(GL_FALSE)
        //参数5:stride,连续顶点属性之间的偏移量,默认为0;
        //参数6:指定一个指针,指向数组中的第一个顶点属性的第一个组件。默认为0
//        glVertexAttribPointer(GLuint(textCoord), 2, GLenum(GL_FLOAT), GLboolean(GL_FALSE), GLsizei(MemoryLayout.size * 5), UnsafeRawPointer(bitPattern: MemoryLayout.size * 3))
        glVertexAttribPointer(GLuint(textCoord), 2, GLenum(GL_FLOAT), GLboolean(GL_FALSE), 0, standardVerticalInvertFragment)

        glActiveTexture(GLenum(GL_TEXTURE0))
        glBindTexture(GLenum(GL_TEXTURE_2D), texture)
        glUniform1i(glGetUniformLocation(self.displayProgram, "inputImageTexture"), 0) //单个纹理可以不用设置

        glDrawArrays(GLenum(GL_TRIANGLES), 0, 6)
        
    
        if (EAGLContext.current() == myContext) {
            myContext.presentRenderbuffer(Int(GL_RENDERBUFFER))
        }
        
    }

这里值得注意的是:绘制特征点的时候不能进行Clear清屏操作,否则会看不摄像头所捕获的内容

大眼片元着色器算法:

 //圓內放大
 vec2 enlargeEye(vec2 textureCoord, vec2 originPosition, float radius, float delta) {
    
    float weight = distance(vec2(textureCoord.x, textureCoord.y / aspectRatio), vec2(originPosition.x, originPosition.y / aspectRatio)) / radius;
    
    weight = 1.0 - (1.0 - weight * weight) * delta;
    weight = clamp(weight,0.0,1.0);
    textureCoord = originPosition + (textureCoord - originPosition) * weight;
    return textureCoord;
}

vec2 bigEye(vec2 currentCoordinate) {
    
    vec2 faceIndexs[2];
    faceIndexs[0] = vec2(74., 72.);//如下图中,以74为圆心,74到72作为半径R
    faceIndexs[1] = vec2(77., 75.);
    
    for(int i = 0; i < 2; I++)
    {
        int originIndex = int(faceIndexs[i].x);
        int targetIndex = int(faceIndexs[i].y);
        
        vec2 originPoint = vec2(facePoints[originIndex * 2], facePoints[originIndex * 2 + 1]);
        vec2 targetPoint = vec2(facePoints[targetIndex * 2], facePoints[targetIndex * 2 + 1]);
        
        float radius = distance(vec2(targetPoint.x, targetPoint.y / aspectRatio), vec2(originPoint.x, originPoint.y / aspectRatio));
        radius = radius * 5.;
        currentCoordinate = enlargeEye(currentCoordinate, originPoint, radius, bigEyeDelta);
    }
    return currentCoordinate;
}

textureCoord表示当前要修改的坐标,originPosition表示圆心坐标,radius表示圆的半径,delta用来控制变形强度。 和瘦脸的算法类似,根据originPositiontargetPosition确定一个圆,圆内的坐标会参与计算,圆外的不变。 圆内的坐标围绕圆心originPosition在变化,最终的坐标完全是由weight的值决定,weight越大,最终的坐标变化越小,当weight为1,即坐标处于圆边界或圆外时,最终的坐标不变;当weight小于1时,最终的坐标会落在原坐标和圆点之间,也就是说最终返回的像素点比原像素点距离圆点更近,这样就产生了以圆点为中心的放大效果。

如下图中,以74为圆心,74到72作为半径R


1.png

瘦脸片元着色器算法:

vec2 curveWarp(vec2 textureCoord, vec2 originPosition, vec2 targetPosition, float delta) {
     
    vec2 offset = vec2(0.0);
    vec2 result = vec2(0.0);
    vec2 direction = (targetPosition - originPosition) ;
    
    float radius = distance(vec2(targetPosition.x, targetPosition.y / aspectRatio), vec2(originPosition.x, originPosition.y / aspectRatio));
    float ratio = distance(vec2(textureCoord.x, textureCoord.y / aspectRatio), vec2(originPosition.x, originPosition.y / aspectRatio)) / radius;
    
    ratio = 1.0 - ratio;
    ratio = clamp(ratio, 0.0, 1.0);
    offset = direction * ratio * delta;
    
    result = textureCoord - offset;
    
    return result;
}

//指定9对 圆心坐标和目标坐标,如下图
vec2 thinFace(vec2 currentCoordinate) {
    
    vec2 faceIndexs[9];
    faceIndexs[0] = vec2(3., 44.);
    faceIndexs[1] = vec2(29., 44.);
    faceIndexs[2] = vec2(7., 45.);
    faceIndexs[3] = vec2(25., 45.);
    faceIndexs[4] = vec2(10., 46.);
    faceIndexs[5] = vec2(22., 46.);
    faceIndexs[6] = vec2(14., 49.);
    faceIndexs[7] = vec2(18., 49.);
    faceIndexs[8] = vec2(16., 49.);
    
    for(int i = 0; i < 9; I++)
    {
        int originIndex = int(faceIndexs[i].x);
        int targetIndex = int(faceIndexs[i].y);
        vec2 originPoint = vec2(facePoints[originIndex * 2], facePoints[originIndex * 2 + 1]);
        vec2 targetPoint = vec2(facePoints[targetIndex * 2], facePoints[targetIndex * 2 + 1]);
        currentCoordinate = curveWarp(currentCoordinate, originPoint, targetPoint, thinFaceDelta);
    }
    return currentCoordinate;
}

textureCoord表示当前要修改的坐标,originPosition表示圆心坐标,targetPosition表示目标坐标,delta用来控制变形强度。

上述shader方法可以这样理解,首先确定一个以originPosition为圆心、targetPositionoriginPosition之间的距离为半径的圆,然后将圆内的像素朝着同一个方向移动一个偏移值,且偏移值在距离圆心越近时越大,最终将变换后的坐标返回。

如果将方法简化为这样的表达式变换后的坐标 = 原坐标 - (目标坐标 - 圆心坐标) * 变形强度,也就是说,方法的作用就是要在原坐标的基础上减去一个偏移值,而(targetPosition - originPosition)决定了移动的方向和最大值。

  • 指定9对 圆心坐标和目标坐标,如下图
2.png

刚开始想的是实现像开头动图那样的效果,但是在实现的时候遇到了一些问题。刚开始的想法是这样的,如下图

3.png

后面想到在实现多滤镜的时候,上一个片元着色器的输出,作为下一个片元着色器的输入, 如下图所示:

流程图

具体详情请查看源码。

本文Demo:码云、Github

你可能感兴趣的:(iOS视觉-- (11) OpenGL ES+GLSL实现大眼和瘦脸)