若该文为原创文章,转载请注明原文出处。
本篇文章参考的是野火-lubancat的rk3568教程,本篇记录了在正点原子的ATK-DLK3568部署。
ResNet18 是一种卷积神经网络,它有 18 层深度,其中包括带有权重的卷积层和全连接层。它是ResNet 系列网络的一个变体,使用了残差连接(residual connection)来解决深度网络的退化问题。
ResNet(Residual Neural Network)由微软研究院的 Kaiming He 等人在 2015 年提出,ResNet 的结 构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升。 ResNet 是一种残差网络,可以把它理解为一个子网络,这个子网络经过堆叠可以构成一个很深的 网络。ResNet 系列有多种变体,如 ResNet18,ResNet34,ResNet50,ResNet101 和 ResNet152,其 网络结构如下:
这里我们主要看下 ResNet18,ResNet18 基本含义是网络的基本架构是 ResNet,网络的深度是 18层,是带有权重的 18 层,不包括 BN 层,池化层。ResNet18 使用的基本残差单元,每个单元由两 个 3x3 卷积层组成,中间有一个 BN 层和一个 ReLU 激活函数。
PyTorch 中的 ResNet18 源码实现:https://github.com/pytorch/vision/blob/main/torchvision/models/ resnet.py
环境分为两部分:一是训练的环境;二是rknn环境;
rknn环境前面有介绍,自行安装;训练的环境是windows电脑无gpu,使用的是CPU
conda create -n ResNet18_env python=3.8 -y
conda activate ResNet18_env
pip install torchvision
pip install onnxruntime
自定义一个 ResNet18 网络结构,并使用 CIFAR-10 数据集进行简单测试。CIFAR-10 数据集由 10 个类别的 60000 张 32x32 彩色图像组成,每个类别有 6000 张图像,总共分为 50000 张训练图像和 10000 张测试图像。
resnet18.py
import os
import torchvision
import torch
import torch.nn as nn
#device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device=torch.device("cpu")
# Transform configuration and data augmentation
transform_train=torchvision.transforms.Compose([
torchvision.transforms.Pad(4),
torchvision.transforms.RandomHorizontalFlip(), #图像一半的概率翻转,一半的概率不翻转
torchvision.transforms.RandomCrop(32), #图像随机裁剪成32*32
# torchvision.transforms.RandomVerticalFlip(),
# torchvision.transforms.RandomRotation(15),
torchvision.transforms.ToTensor(), #转为Tensor ,归一化
torchvision.transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010))
])
transform_test=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# epoch时才对数据集进行以上数据增强操作
num_classes=10
batch_size=128
learning_rate=0.001
num_epoches=100
classes = ("plane","car","bird","cat","deer","dog","frog","horse","ship","truck")
# load downloaded dataset
train_dataset = torchvision.datasets.CIFAR10('./data', download=True, train=True, transform=transform_train)
test_dataset = torchvision.datasets.CIFAR10('./data', download=True, train=False, transform=transform_test)
# Data loader
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Define 3*3 convolutional neural network
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual=x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if(self.downsample):
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# 自定义一个神经网络,使用nn.model,,通过__init__初始化每一层神经网络。
# 使用forward连接数据
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes):
super(ResNet, self).__init__()
self.in_channels = 16
self.conv = conv3x3(3, 16)
self.bn = torch.nn.BatchNorm2d(16)
self.relu = torch.nn.ReLU(inplace=True)
self.layer1 = self._make_layers(block, 16, layers[0])
self.layer2 = self._make_layers(block, 32, layers[1], 2)
self.layer3 = self._make_layers(block, 64, layers[2], 2)
self.layer4 = self._make_layers(block, 128, layers[3], 2)
self.avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
self.fc = torch.nn.Linear(128, num_classes)
def _make_layers(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels):
downsample = torch.nn.Sequential(
conv3x3(self.in_channels, out_channels, stride=stride),
torch.nn.BatchNorm2d(out_channels))
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return torch.nn.Sequential(*layers)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
# Make model,使用cpu
model=ResNet(ResidualBlock, [2,2,2,2], num_classes).to(device=device)
# 打印model结构
# print(f"Model structure: {model}\n\n")
# 优化器和损失函数
criterion = nn.CrossEntropyLoss() #交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) #优化器随机梯度下降
if __name__ == "__main__":
# Train the model
total_step = len(train_loader)
for epoch in range(0,num_epoches):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device=device)
labels = labels.to(device=device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
#sum_loss += loss.item()
#_, predicted = torch.max(outputs.data, dim=1)
#total += labels.size(0)
#correct += predicted.eq(labels.data).cpu().sum()
if (i+1) % total_step == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epoches, i+1, total_step, loss.item()))
print("Finished Tranining")
# 保存权重文件
#torch.save(model.state_dict(), 'model_weights.pth')
#torch.save(model, 'model.pt')
print('\nTest the model')
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device=device)
labels = labels.to(device=device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('在10000张测试集图片上的准确率:{:.4f} %'.format(100 * correct / total))
# 导出onnx模型
x = torch.randn((1, 3, 32, 32))
torch.onnx.export(model, x, './resnet18.onnx', opset_version=12, input_names=['input'], output_names=['output'])
这里有个要注意的,数据集已经提前下载好了,所以没有在线下载
数据集下载是通过下面代码,数据集放在data目录下:
# load downloaded dataset
train_dataset = torchvision.datasets.CIFAR10('./data', download=True, train=True, transform=transform_train)
test_dataset = torchvision.datasets.CIFAR10('./data', download=True, train=False, transform=transform_test)
类型分类为10类
classes = ("plane","car","bird","cat","deer","dog","frog","horse","ship","truck")
等待大概1小时,训练结束后会在当前目录下生成resnet18.onnx模型
测试代码如下:
test_resnet18_onnx.py
import os, sys
sys.path.append(os.getcwd())
import onnxruntime
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
# 自定义的数据增强
def get_test_transform():
return transforms.Compose([
transforms.Resize([32, 32]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 推理的图片路径
image = Image.open('./horse5.jpg').convert('RGB')
img = get_test_transform()(image)
img = img.unsqueeze_(0) # -> NCHW, 1,3,224,224
# 模型加载
onnx_model_path = "resnet18.onnx"
resnet_session = onnxruntime.InferenceSession(onnx_model_path)
inputs = {resnet_session.get_inputs()[0].name: to_numpy(img)}
outs = resnet_session.run(None, inputs)[0]
print("onnx weights", outs)
print("onnx prediction", outs.argmax(axis=1)[0])
测试预测结果7,对应的是马。
打开ATK搭建好的虚拟机,进入环境rknn2_env,RKNN环境要确保安装好。
转换代码在rknn-toolkit2目录下的example的pytorch里也有,参考代码如下:
rknn_transfer.py
import numpy as np
import cv2
from rknn.api import RKNN
import torchvision.models as models
import torch
import os
def softmax(x):
return np.exp(x)/sum(np.exp(x))
def torch_version():
import torch
torch_ver = torch.__version__.split('.')
torch_ver[2] = torch_ver[2].split('+')[0]
return [int(v) for v in torch_ver]
if __name__ == '__main__':
if torch_version() < [1, 9, 0]:
import torch
print("Your torch version is '{}', in order to better support the Quantization Aware Training (QAT) model,\n"
"Please update the torch version to '1.9.0' or higher!".format(torch.__version__))
exit(0)
MODEL = './resnet18.onnx'
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[127.5, 127.5, 127.5], std_values=[255, 255, 255], target_platform='rk3568')
#rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395], target_platform='rk3568')
#rknn.config(mean_values=[125.307, 122.961, 113.8575], std_values=[51.5865, 50.847, 51.255], target_platform='rk3568')
print('done')
# Load model
print('--> Loading model')
#ret = rknn.load_pytorch(model=model, input_size_list=input_size_list)
ret = rknn.load_onnx(model=MODEL)
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=False)
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn('./resnet_18_100.rknn')
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread('./0_125.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img,(32,32))
#img = np.expand_dims(img, 0)
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
np.save('./pytorch_resnet18_qat_0.npy', outputs[0])
#show_outputs(softmax(np.array(outputs[0][0])))
print(outputs)
print('done')
rknn.release()
运行python rknn_transfer.py,正常生成rknn文件。
会在当前目录下生成rknn模型
导出rknn后,把rknn和测试图片通过adb上传到开发板。
rknnlite_inference0.py
import numpy as np
import cv2
import os
from rknnlite.api import RKNNLite
IMG_PATH = '2_67.jpg'
RKNN_MODEL = './resnet18.rknn'
img_height = 32
img_width = 32
class_names = ["plane","car","bird","cat","deer","dog","frog","horse","ship","truck"]
# Create RKNN object
rknn_lite = RKNNLite()
# load RKNN model
print('--> Load RKNN model')
ret = rknn_lite.load_rknn(RKNN_MODEL)
if ret != 0:
print('Load RKNN model failed')
exit(ret)
print('done')
# Init runtime environment
print('--> Init runtime environment')
ret = rknn_lite.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# load image
img = cv2.imread(IMG_PATH)
img = cv2.resize(img,(32,32))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.expand_dims(img, 0)
# runing model
print('--> Running model')
outputs = rknn_lite.inference(inputs=[img])
print("result: ", outputs)
print(
"This image most likely belongs to {}."
.format(class_names[np.argmax(outputs)])
)
rknn_lite.release()
在开发板上运行结果
识别出来horse,验证正常。
如有侵权,或需要完整代码,请及时联系博主。