pd.read_csv(csv_file, index_col=0)
index_col=1默认读取数据的第一列是索引
df_new.to_csv("work/files/ten_bicycle.csv")
保存成csv文件
jiangsu = pd.read_excel("/home/aistudio/data/data20465/jiangsu.xls")
jiangsu.to_excel('work/files/jiangsu.xlsx')
cpi.drop([11, 12], axis=0, inplace=True)
删除第11、12行,并覆盖原来的
cpi.reset_index(drop=True, inplace=True)
重置索引
cpi.columns.rename('', inplace=True)
列名重命名
for column in cpi.columns[:-1]:
cpi[column] = pd.to_numeric(cpi[column])
cpi.dtypes
将数据转换为数字
ax.boxplot(js['population'], showmeans=True)
画箱线图并显示均值
from PIL import Image
color_image = Image.open("work/images/laoqi.png")
读取图片1
gray_image = Image.open("work/images/laoqi.png").convert("L")
彩色图像转灰度图
convert()
是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式
1 ------------------(1位像素,黑白,每字节一个像素存储)
L ------------------(8位像素,黑白)
P ------------------(8位像素,使用调色板映射到任何其他模式)
RGB------------------(3x8位像素,真彩色)
RGBA------------------(4x8位像素,带透明度掩模的真彩色)
CMYK--------------------(4x8位像素,分色)
YCbCr--------------------(3x8位像素,彩色视频格式)
I-----------------------(32位有符号整数像素)
F------------------------(32位浮点像素)
import numpy as np
color_array = np.array(color_image)
color_array.shape
输出:(407, 396, 4)
将彩色图片转为np矩阵
gray_array = np.array(gray_image)
gray_array.shape
输出:(407, 396)
将灰色图片转为np矩阵
import cv2
img = cv2.imread('work/images/laoqi.png', 0)
读取图片2(常用)
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
显示图片
from PIL import Image
Image.fromarray(img)
实现array到image的转换
part_img = img[50:260, 100:280]
裁剪图片
reverse_img = 255 - img
Image.fromarray(reverse_img)
负片
part1 = img1[50:260, 100:280]
part2 = img2[300:, 100:280]
new_img = np.vstack((part1, part2))
拼接两张图片
import pandas as pd
import pymysql
mydb = pymysql.connect(host="localhost",
user='root',
password='1q2w3e4r5t',
db="books",
)
#连接数据库
cursor = mydb.cursor()
path = "/Users/qiwsir/Documents/Codes/DataSet"
df = pd.read_csv(path + "/jiangsu/cities.csv")
#插入数据
sql = 'insert into city (name, area, population, longd, latd) \
values ("%s","%s", "%s", "%s", "%s")'
for idx in df.index:
row = df.iloc[idx]
cursor.execute(sql % (row['name'], row['area'], row['population'], row['longd'], row['latd']))#进行sql操作
mydb.commit()#关闭连接
sql_count = "SELECT COUNT(1) FROM city"
cursor.execute(sql_count)
n = cursor.fetchone() # 获得一个返回值
n
sql_columns = 'SELECT name, area FROM city'
cursor.execute(sql_columns)
cursor.fetchall()
#以area字段值从大到小查询全部记录;
sql_sort = "SELECT * FROM city ORDER BY area DESC"
cursor.execute(sql_sort)
cursor.fetchall()
#更简便的写法
import pandas as pd
import pymysql
mydb = pymysql.connect(host="localhost",
user='root',
password='1q2w3e4r5t',
db="books",)
cities = pd.read_sql_query("Select * FROM city", con=mydb, index_col='id')
cities
import pandas as pd
df = pd.read_csv("/home/aistudio/data/data20505/pm2.csv")
df.sample(10)
df.shape
df.info()
df.dtypes
import pandas as pd
df = pd.DataFrame([{'col1':'a', 'col2':'1'},
{'col1':'b', 'col2':'2'}]) #类似字典,df.dtypes是object
s = pd.Series(['1', '2', '4.7', 'pandas', '10']) #类似列表
df['col2-int'] = df['col2'].astype(int) #将数值转换为int类型
s.astype(float, errors='ignore')#忽略错误的参数
pd.to_numeric(s, errors='coerce')#可以将无效值强制转换为NaN
pd.to_datetime(df[['Month', 'Day', 'Year']])#将数据转换成时间
#替换数据
def convert_money(value):
new_value = value.replace("$","").replace(",","")
return float(new_value)
df['2016'].apply(convert_money)
#替换数据2
df['Percent Growth'].apply(lambda x: float(x.replace("%", "")) / 100)
np.where(df['Active']=='Y', 1, 0) #条件查找,满足输出1,不满足输出0
bras['creationTime'].str.split().apply(pd.Series, 0)#将axis=0字符分割并转换成pd.Series
bras['productColor'].str.findall("[\u4E00-\u9FFF]+").str[0]#正则表达式匹配
bras2.str.findall("[a-zA-Z]+").str[0]
bras2 = bras['productSize'].str.upper()#转换成大写字母
df.duplicated('Age', keep='last')#保留重复数据的后一个,返回:指定列重复行boolean Series
df.drop_duplicates('Age', keep='last')# 返回:副本或替代
df[df.duplicated()].count() / df.count() #查看重复数据所占比例
输出:Name 0.142857
Age 0.142857
Score 0.142857
dtype: float64
df.duplicated().any() #查看是否有重复数据
输出:True
hitters.isna().any() #查看是否有缺失数据
hitters.isnull().sum()
(hitters.shape[0] - hitters.count()) / hitters.shape[0] #查看缺失数据比例
df.dropna(axis=0, how='all') # how声明删除条件
df.dropna(thresh=2) # 非缺失值小于2的删除
df['ColA'].fillna(method='bfill') #用指定值填补缺失数据
pdf2 = persons.sample(20)
pdf2['Height-na'] = np.where(pdf2['Height'] % 5 == 0, np.nan, pdf2['Height']) # 制造缺失值
from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') #用均值替换缺失值
col_values = imp_mean.fit_transform(pdf2['Height-na'].values.reshape((-1, 1)))
col_values
#使用固定值替换缺失值
imp = SimpleImputer(missing_values=-1, strategy='constant', fill_value=110)
imp.fit_transform(df['price'].values.reshape((-1, 1)))
#根据规律填补缺失值1
df = pd.DataFrame({"one":np.random.randint(1, 100, 10),
"two": [2, 4, 6, 8, 10, 12, 14, 16, 18, 20],
"three":[5, 9, 13, np.nan, 21, np.nan, 29, 33, 37, 41]})
from sklearn.linear_model import LinearRegression
df_train = df.dropna() #训练集
df_test = df[df['three'].isnull()] #测试集
regr = LinearRegression()
regr.fit(df_train['two'].values.reshape(-1, 1), df_train['three'].values.reshape(-1, 1))
df_three_pred = regr.predict(df_test['two'].values.reshape(-1, 1))
# 将所得数值填补到原数据集中
df.loc[(df.three.isnull()), 'three'] = df_three_pred
df
#根据规律填补缺失值2
from sklearn.datasets import load_iris # 引入鸢尾花数据集
import numpy as np
iris = load_iris()
X = iris.data
# 制造含有缺失值的数据集
rng = np.random.RandomState(0)
X_missing = X.copy()
mask = np.abs(X[:, 2] - rng.normal(loc=5.5, scale=0.7, size=X.shape[0])) < 0.6
X_missing[mask, 3] = np.nan # X_missing是包含了缺失值的数据集
from missingpy import KNNImputer # 引入KNN填充缺失值的模型
imputer = KNNImputer(n_neighbors=3, weights="uniform")
X_imputed = imputer.fit_transform(X_missing)
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("/home/aistudio/data/data20510/experiment.csv", index_col=0)
fig, ax = plt.subplots()
ax.scatter(df['alpha'], df['belta']) #通过散点图查看离散值
sns.boxplot(x="day", y="tip", data=tips, palette="Set3")#通过箱线图查看离散值
#箱线图和散点图结合查看离散值
ax = sns.boxplot(x="day", y="tip", data=tips)
ax = sns.swarmplot(x="day", y="tip", data=tips, color=".25")
#通过箱线图去除离群值
percentlier = boston_df.quantile([0, 0.25, 0.5, 0.75, 1], axis=0)
IQR = percentlier.iloc[3] - percentlier.iloc[1] #箱线图里矩形的高度
Q1 = percentlier.iloc[1] #下四分位
Q3 = percentlier.iloc[3] #上四分位
(boston_df < (Q1 - 1.5 * IQR)).any() #上限
(boston_df > (Q3 + 1.5 * IQR)).any() #下限
boston_df_out = boston_df[~((boston_df < (Q1 - 1.5 * IQR)) |(boston_df > (Q3 + 1.5 * IQR))).any(axis=1)] #去掉离群值
boston_df_out.shape
四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的得分就是四分位数。
第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。
首先确定四分位数的位置:
Q1的位置= (n+1) × 0.25
Q2的位置= (n+1) × 0.5
Q3的位置= (n+1) × 0.75
n表示项数
对于四分位数的确定,有不同的方法,另外一种方法基于N-1 基础。即
Q1的位置=(n-1)x 0.25
Q2的位置=(n-1)x 0.5
Q3的位置=(n-1)x 0.75
#通过正态分布去除离群值
# 计算z值
from scipy import stats #统计专用模块
import numpy as np
rm = boston_df['RM']
z = np.abs(stats.zscore(rm))
st = boston_df['RM'].std()
st
threshold = 3 * st #阈值,不是“阀值”
print(np.where(z > threshold)) # ⑤
输出:(array([ 97, 98, 162, 163, 166, 180, 186, 195, 203, 204, 224, 225, 226,
232, 233, 253, 257, 262, 267, 280, 283, 364, 365, 367, 374, 384,
386, 406, 412, 414]),)
rm_in = rm[(z < threshold)] # 消除离群值
rm_in.shape
输出:(476,)
df.replace({"N": 0, 'Y': 1}) #直接替换
from sklearn.preprocessing import LabelEncoder #自动转换
le = LabelEncoder()
le.fit_transform(df['hypertension'])
le.inverse_transform([0, 1, 1, 2, 1, 0]) #将标准化后的数据转换为原始数据
import re #用词频统计进行转换
d1 = "I am Laoqi. I am a programmer."
d2 = "Laoqi is in Soochow. It is a beautiful city."
words = re.findall(r"\w+", d1+d2) # 以正则表达式提炼单词,不是用split(),这样就避免了句点问题
words = list(set(words)) # 唯一单词保存为列表
[w.lower() for w in words]
words
# 为每句话中的单词出现次数计数
def count_word(document, unique_words):
count_doc = []
for word in unique_words:
n = document.lower().count(word)
count_doc.append(n)
return count_doc
count1 = count_word(d1, words)
count2 = count_word(d2, words)
print(count1)
print(count2)
# 保存为dataframe
df = pd.DataFrame([count1, count2], columns=words, index=['d1', 'd2'])
df
from sklearn.feature_extraction.text import CountVectorizer #使用自带的库进行词频统计
count_vect = CountVectorizer()
tf1 = count_vect.fit_transform([d1, d2])
tf1.shape
输出:(2, 9)
count_vect.get_feature_names() # 相对前面方法少了2个,因为I 和 a作为常用词停词了。
输出:['am', 'beautiful', 'city', 'in', 'is', 'it', 'laoqi', 'programmer', 'soochow']
tf1.toarray() # 显示记录数值
输出:array([[2, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 1, 1, 1, 2, 1, 1, 0, 1]])
#阈值将数值型转变为二进制型,阈值可以进行设定,另外只能对数值型数据进行处理,且传入的参数必须为2D数组,也就是不能是Series这种类型,shape为(m,n)而不是(n,)类型的数组
from sklearn.preprocessing import Binarizer
bn = Binarizer(threshold=pm25["Exposed days"].mean()) # ①
result = bn.fit_transform(pm25[["Exposed days"]]) # ②
pm25['sk-bdays'] = result
pm25.sample(10)
from sklearn.preprocessing import binarize
fbin = binarize(pm25[['Exposed days']], threshold=pm25['Exposed days'].mean())
fbin[[1, 50, 100, 150, 200]]
图片部分(略)
pd.get_dummies(g) #pandas提供对one-hot编码的函数
persons.merge(df_dum, left_index=True, right_index=True) #组合数据
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
fs = ohe.fit_transform(df[['color']])
fs_ohe = pd.DataFrame(fs.toarray()[:, 1:], columns=["color_green", 'color_red'])
df = pd.concat([df, fs_ohe], axis=1)
df
输出:
color size price classlabel color_green color_red
0 green 1 29.9 class1 1.0 0.0
1 red 2 69.9 class2 0.0 1.0
2 blue 3 99.9 class1 0.0 0.0
3 red 2 59.9 class1 0.0 1.0
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
import numpy as np
encoded_x = None
for i in range(0, X.shape[1]):
label_encoder = LabelEncoder() # 数值化
feature = label_encoder.fit_transform(X[:,i])
feature = feature.reshape(X.shape[0], 1)
onehot_encoder = OneHotEncoder(sparse=False) # OneHot编码
feature = onehot_encoder.fit_transform(feature)
if encoded_x is None:
encoded_x = feature
else:
encoded_x = np.concatenate((encoded_x, feature), axis=1)
print("X shape: : ", encoded_x.shape)
#将数据由非郑态分布转换为正态分布常用的方法
data['logtime'] = np.log10(data['time']) #方法一
from scipy import stats
dft = stats.boxcox(transform)[0] #方法二
from sklearn.preprocessing import power_transform
dft2 = power_transform(dc_data[['AIR_TIME']], method='box-cox')
#使用sklearn.preprocessing.PolynomialFeatures来进行特征的构造
from sklearn.preprocessing import PolynomialFeatures # ③
poly = PolynomialFeatures(2) # ④
poly.fit_transform(X)
原始数据:
array([[0, 1],
[2, 3],
[4, 5]])
构造特征后的数据:
array([[ 1., 0., 1., 0., 0., 1.],
[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])
#将数据从任意分布映射到尽可能接近高斯分布,以稳定方差和最小化偏度
from sklearn.preprocessing import power_transform
dft2 = power_transform(dc_data[['AIR_TIME']], method='box-cox')
hbcs = plt.hist(dft2, bins=100)
#为了简化构建变换和模型链的过程,Scikit-Learn提供了pipeline类,可以将多个处理步骤合并为单个Scikit-Learn估计器
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
df = pd.read_csv("/home/aistudio/data/data20514/xsin.csv")
colors = ['teal', 'yellowgreen', 'gold']
plt.scatter(df['x'], df['y'], color='navy', s=30, marker='o', label="training points")
for count, degree in enumerate([3, 4, 5]):
model = make_pipeline(PolynomialFeatures(degree), Ridge()) # ③
model.fit(df[['x']], df[['y']])
y_pre = model.predict(df[['x']])
plt.plot(df['x'], y_pre, color=colors[count], linewidth=2,
label="degree %d" % degree)
plt.legend()
#无监督离散等分分箱
pd.cut(ages['years'],3) #可添加参数如:bins=[9, 30, 50],labels=[0, 1, 2]
输出:
0 (9.943, 29.0]
1 (9.943, 29.0]
2 (29.0, 48.0]
3 (48.0, 67.0]
4 (48.0, 67.0]
5 (29.0, 48.0]
6 (29.0, 48.0]
Name: years, dtype: category
Categories (3, interval[float64]): [(9.943, 29.0] < (29.0, 48.0] < (48.0, 67.0]] #分成三部分
pd.qcut(ages['years'],3) #与cut类似
#无监督离散2
from sklearn.preprocessing import KBinsDiscretizer
kbd = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform') #n_bins=3:划分区间个数、encode='ordinal'编码方式:整数数值、strategy='uniform'离散化采用的特质是分区的宽度相同
trans = kbd.fit_transform(ages[['years']])
ages['kbd'] = trans[:, 0]
ages
#有监督离散化
import entropy_based_binning as ebb
A = np.array([[1,1,2,3,3], [1,1,0,1,0]])
ebb.bin_array(A, nbins=2, axis=1)
输出:array([[0, 0, 1, 1, 1],
[1, 1, 0, 1, 0]])
#有监督离散化2
from mdlp.discretization import MDLP
from sklearn.datasets import load_iris
transformer = MDLP()
iris = load_iris()
X, y = iris.data, iris.target
X_disc = transformer.fit_transform(X, y)
X_disc
from sklearn import datasets
from sklearn.preprocessing import StandardScaler #标准化
iris = datasets.load_iris()
iris_std = StandardScaler().fit_transform(iris.data)
from sklearn.preprocessing import MinMaxScaler #最小最大区间化
iris_mm = MinMaxScaler().fit_transform(iris.data)
iris_mm[:5]
from sklearn.preprocessing import RobustScaler, MinMaxScaler #RobustScaler基于原始数据的均值和标准差进行的标准化
robust = RobustScaler()
robust_scaled = robust.fit_transform(X)
robust_scaled = pd.DataFrame(robust_scaled, columns=['x1', 'x2'])
from sklearn.preprocessing import Normalizer #归一化 可添加参数norm='l1'、norm='max'
norma = Normalizer()
norma.fit_transform([[3, 4]])
array([[0.6, 0.8]])
from sklearn.model_selection import train_test_split #分割数据集
from sklearn.preprocessing import StandardScaler
X, y = df_wine.iloc[:, 1:], df_wine.iloc[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0, stratify=y)
std = StandardScaler()
X_train_std = std.fit_transform(X_train)
X_test_std = std.fit_transform(X_test)
#循序特征选择
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
X_train, X_test, y_train, y_test= train_test_split(X, y,
stratify=y,
test_size=0.3,
random_state=1)
std = StandardScaler()
X_train_std = std.fit_transform(X_train)
knn = KNeighborsClassifier(n_neighbors=3) # ①
sfs = SFS(estimator=knn, # ②
k_features=4,
forward=True,
floating=False,
verbose=2,
scoring='accuracy',
cv=0)
sfs.fit(X_train_std, y_train)
#穷举特征选择
from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS
efs = EFS(RandomForestRegressor(),min_features=1,max_features=5,scoring='r2',n_jobs=-1)
efs.fit(np.array(mini_data),y_train)
mini_data.columns[list(efs.best_idx_)]
#穷举特征选择2
from mlxtend.feature_selection import ExhaustiveFeatureSelector
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.metrics import roc_auc_score
feature_selector = ExhaustiveFeatureSelector(RandomForestClassifier(n_jobs=-1),
min_features=2,
max_features=4,
scoring='roc_auc',
print_progress=True,
cv=2)
features = feature_selector.fit(np.array(train_features.fillna(0)), train_labels)
filtered_features= train_features.columns[list(features.best_idx_)]
filtered_features
#递归特征消除
from sklearn.feature_selection import RFE
rfe = RFE(RandomForestRegressor(), n_features_to_select=5)
rfe.fit(np.array(mini_data),y_train)
rfe.ranking_
#方法一
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest # ①
from sklearn.feature_selection import chi2
iris = load_iris()
X, y = iris.data, iris.target
skb = SelectKBest(chi2, k=2) # ②
result = skb.fit(X, y) # ③
#方法二
from sklearn.feature_selection import VarianceThreshold
vt = VarianceThreshold(threshold=(0.8 * (1 - 0.8))) # ⑤
vt.fit_transform(X)
# 用嵌入法选择特征
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression #使用logistic回归模型
embeded_lr_selector = SelectFromModel(LogisticRegression(penalty="l1"), '1.25*median')
embeded_lr_selector.fit(X_norm, y)
embeded_lr_support = embeded_lr_selector.get_support()
embeded_lr_feature = X.loc[:,embeded_lr_support].columns.tolist()
print(str(len(embeded_lr_feature)), 'selected features')
可以看下实例了解
#主成分分析
from sklearn.decomposition import PCA
import numpy as np
pca = PCA() # ①
X_pca = pca.fit_transform(X) # ②
np.round(X_pca[: 4], 2)
#因子分析
from sklearn.decomposition import FactorAnalysis
fa = FactorAnalysis(n_components=2)
iris_two = fa.fit_transform(iris.data)
iris_two[: 4]
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis(n_components=2)
X_lda = lda.fit_transform(X, y)
plt.scatter(X_lda[:, 0], X_lda[:, 1], c=y)