- 四平方和(多种解法)
delim6
算法数据结构哈希算法c++
注意,会列举过不了的一些思路四平方和四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多44个正整数的平方和。如果把0包括进去,就正好可以表示为4个数的平方和。比如:5=0^2+0^2+1^2+2^27=1^2+1^2+1^2+2^2对于一个给定的正整数,可能存在多种平方和的表示法。要求你对4个数排序:0≤a≤b≤c≤d并对所有的可能表示法按a,b,c,d为联合主键升序排列,最后输出第一个
- 朴素贝叶斯模型在文本分类中的应用
Ash Butterfield
nlp分类数据挖掘人工智能
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,广泛应用于文本分类任务中。它的核心思想是根据训练数据中不同类别的条件概率,预测新文本属于哪个类别。尽管其假设条件较为简单(假设特征之间相互独立),但朴素贝叶斯在许多实际应用中仍表现出色,特别是在处理文本分类任务时。本文将介绍朴素贝叶斯模型的基本原理、在文本分类中的应用以及其优缺点,并通过示例说明其具体实现。1.朴素贝叶斯模型的基
- CAP与BASE:分布式系统设计的灵魂与妥协
后端java分布式
CAP理论CAP理论起源于2000年,由加州大学伯克利分校的EricBrewer教授在分布式计算原理研讨会(PODC)上提出,因此CAP定理又被称作布鲁尔定理(Brewer’stheorem)2年后,麻省理工学院的SethGilbert和NancyLynch发表了布鲁尔猜想的证明,CAP理论正式成为分布式领域的定理。简介CAP也就是Consistency(一致性)、Availability(可用性
- C# 使用余弦定理寻找三角形第三边的程序(Program to find third side of triangle using law of cosines)
csdn_aspnet
C#c#开发语言
给定两条边A、B和角C。利用余弦定理求出三角形的第三边。示例:输入:a=5,b=8,c=49输出:6.04339具体来说,当你知道三角形两条边的长度和中间的角度时,余弦定理可以用来求出三角形第三边的长度。参见此处了解如何求余弦值。假设a、b、c是三角形的边,其中c是角C对面的边。然后,c^2=a^2+b^2-2*a*b*cos(c)或c=sqrt(a^2+b^2-2*a*b*cos(c))示例代码
- 差分解方程
やっはろ
django
差分解方程差分法在数值求解偏微分方程(PDEs)和常微分方程(ODEs)时,可以分为隐式格式和显式格式。以下是两者的主要区别:显式格式(ExplicitScheme)时间推进:显式格式在每一个时间步直接计算出下一个时间步的解。不需要求解非线性方程组,因为每个时间步的解可以直接从上一个时间步的解计算得出。稳定性:通常要求时间步长较小,以保证数值稳定性。稳定性与时间步长和空间步长的比值有关,通常由一个
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- erf 和 erfc 函数介绍以及在通信系统中的应用
正是读书时
知识点概率论信息与通信
1.误差函数(erf)误差函数\(\text{erf}(x)\)是一种特殊函数,在概率、统计和偏微分方程中有广泛应用。它的定义为:\[\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}\,dt\]特性:-\(\text{erf}(0)=0\)-\(\text{erf}(\infty)=1\)-\(\text{erf}(-x)=-\text{erf}
- 有哪些滤波,原理是什么,分别在什么时候用
高力士等十万人
OpenCV计算机视觉图像处理opencvpython
均值滤波(AverageFiltering)原理:通过计算像素点邻域内像素值的平均值来作为该像素点滤波后的新值。例如,对于一个3x3的邻域,将9个像素值相加然后除以9得到滤波后的像素值。优点:简单易实现,能够对信号或图像进行一定程度的平滑处理,降低噪声的影响。应用场景:适用于对精度要求不高的图像或信号平滑场景,如视频监控中的简单图像预处理。中值滤波(MedianFiltering)原理:对于一个给
- 函数的传参、递归函数、预处理命令
m0_71564676
算法linux嵌入式c语言开发语言c++
一、函数的传参1.值传递实参将值传递给形参函数体内部想使用函数体外部变量值的时候,使用值传递形参是实参的副本,形参的变化不会影响实参的变化2.整形数组的传递intfun(intarray[],intlen);注意:1.array后面加[],表示传入的为整形数组名,而不是整数类型2.函数内部的array和外部的数组名为同一数组,里面数据的变化会影响外面数组中值的变化二、递归函数函数定义时调用函数体本
- C#学习笔记——数据与运算(二)
Buling_0
c#学习笔记
1.常量与变量1.1.常量常量是指哪些为人们可读格式的固定数值,在程序的运行过程中值不会发生改变,称为常量。在C#中可以通过关键字const来声明常量,格式如下:const类型标识符常量名=表达式;constdoublePAI=3.14;//定义了一个double类型的常量PAI,值为3.14常量的特点:常量在声明时必须赋予初值,且值在程序的运行中无法改变;定义常量时表达式中的运算符对象只允许出现
- 【论文解读】神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界
神经美学茂森
无痛入门神经网络神经网络网络人工智能
K.Hornik,M.Stinchcombe,andH.White.Multilayerfeed-forwardnetworksareuniversalapproximators.NeuralNet-works,2(5):359-366,1989论文解读神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界第一节:通俗解释——万能近似定理的核心思想万能近似定理(UniversalAp
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- 中值十字形滤波 matlab,Opencv+python:中值滤波十字形窗口
夏小龙
中值十字形滤波matlab
前言在进行图像空域处理时,对于椒盐噪声的图像,中值滤波是一个很不错的选择,一般来说mask有矩形椭形和十字形,十字形被认为在处理含有少数尖锥基元的图像更能保证尖锥的形状,由于没找到Matlab自带的函数库实现十字窗口,并且论坛上有极少的Opencv基于python的代码,大多还是付费的,于是自己写了一个模板,能够实现基本原理,至于效果和处理速度,有时间以后会进行优化。中值滤波中值滤波的原理很简单,
- python+OpenCv笔记(十一):中值滤波
ReadyGo!!!
OpenCV(Python)opencvpython计算机视觉
中值滤波:原理:中值滤波是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值。应用:中值滤波对椒盐噪声来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。OpenCvAPI:cv2.medianBlur(src,ksize)参数:src:输入的图像ksize:卷积核的大小代码编写:importnumpyasnpimportcv2ascvimportrando
- opencv 中值滤波
菩提本无树007
opencv计算机视觉人工智能
中值滤波是一种常用的图像滤波算法,是在像素点周围进行多个点的中值滤波,将点的灰度值根据其周围像素点的灰度值进行平均,并使这些点的灰度值具有相似性,以达到平滑去噪的目的。中值滤波在图像处理中应用广泛,在图像滤波和图像增强处理中得到了广泛应用。中值滤波的原理如下:(1)中值滤波是一种通过计算灰度图像各像素灰度值的均值来实现去噪的算法。它采用灰度均值来代替灰度方差,在保证灰度图像的基本信息不变的同时,滤
- 【python opencv】中值滤波
人才程序员
PythonOpencv视觉处理opencvpython计算机视觉python3.11人工智能开发语言qt
文章目录中值滤波通俗易懂的介绍简单解释:学术概念数学描述示例代码1.**中值滤波的实现**2.**中值滤波去噪**3.**调整中值滤波窗口大小**4.**自定义中值滤波器**总结中值滤波通俗易懂的介绍中值滤波(MedianFiltering)是一种常用于图像去噪的技术。它的核心思想是在图像的每个像素周围选择一个窗口,然后用这个窗口内所有像素的中值替换当前像素的值。中值滤波特别有效于去除“椒盐噪声”
- 计算机视觉8:图像分割
听说你还在搞什么原创~
计算机视觉图像处理深度学习
1.图像分割概述图像分割主要分为阈值分割方法和边缘检测等方法。阈值分割方法是提出最早的一种方法。边缘检测方法是被研究的最多的一种分割方法,它试图通过检测包含不同区域的边缘来解决图像分割问题。比如微分算子边缘检测,以及为了降低噪声影响使用多尺度方法提取图像边缘。2.图像分割技术现状图像分割,是将一幅数字图像按照某种目的划分为两个或多个子图像区域。理想的图像分割算法,应该是对所有的图像都能够自动的划分
- PID控制详解
鹿屿二向箔
算法
PID控制详解一、PID控制简介PID(ProportionalIntegralDerivative)控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业过程控制,尤其适用于可建立精确数学模型的确定性控制系统。在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节,它实际上是一种算法。PID控制器问世至今已有近70年历史,
- DARTS-PT: 重新思考可微分神经架构搜索中的架构选择
凌洲丰Edwina
DARTS-PT:重新思考可微分神经架构搜索中的架构选择darts-pt[ICLR2021OutstandingPaper]RethinkingArchitectureSelectioninDifferentiableNAS项目地址:https://gitcode.com/gh_mirrors/da/darts-pt项目介绍DARTS-PT是一个基于GitHub的开源项目,源自ICLR2021的一
- 一阶系统和二阶系统
不知道是谁2
程序人生
一阶系统和二阶系统是动态系统分析中的两个基本概念,它们的主要区别在于系统的响应特性、阶次以及对输入信号的处理方式:1.**阶数**:-**一阶系统**:这类系统只有一个积分项,如常微分方程中的形式为dy/dt=k*x(t)+b,其中dy/dt表示状态变化率,k是增益系数,b可能是偏置。它的响应速度快,直接对输入做出反应。-**二阶系统**:有两个阶跃响应,通常包含一个导数项和一个积分项,如d^2y
- 【数论】—— 素数
Tom_wsc
数论算法
素数定义因数只有111和这个数本身的数被称作素数。注意:111既不是素数也不是合数,222是最小的素数。两个关于素数的定理唯一分解定理对于任意大于111的整数xxx,都可以分解成若干个素数的乘积:x=p1a1×p2a2×p3a3×⋯×pnan(ai∈Z+)x=p_1^{a_1}\timesp_2^{a_2}\timesp_3^{a_3}\times\cdots\timesp_n^{a_n}(a_i
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- python学opencv|读取图像(五十六)使用cv2.GaussianBlur()函数实现图像像素高斯滤波处理
西猫雷婶
python学习笔记pythonopencv计算机视觉
【1】引言前序学习了均值滤波和中值滤波,对图像的滤波处理有了基础认知,相关文章链接为:python学opencv|读取图像(五十四)使用cv2.blur()函数实现图像像素均值处理-CSDN博客python学opencv|读取图像(五十五)使用cv2.medianBlur()函数实现图像像素中值滤波处理-CSDN博客在此基础上,我们可以进入高斯滤波的学习,此时需要使用cv2.GaussianBlu
- 解析数论基础:第三十三章 零点分布(二)
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:第三十三章零点分布(二)作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:解析数论、黎曼ζ函数、零点分布、素数定理、蒙哥马利猜想、配对相关函数、随机矩阵理论1.背景介绍1.1问题的由来解析数论是现代数学的重要分支,它利用复变函数论等分析学的方法研究数论问题。其中一个核心课题就是研究黎曼ζ函数的性质,特别是它的零点分布。这个问题不仅
- 机器学习算法 —— 朴素贝叶斯
ZShiJ
机器学习算法机器学习算法分类贝叶斯
欢迎来到我的博客——探索技术的无限可能!博客的简介(文章目录)目录朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯的优点朴素贝叶斯的缺点朴素贝叶斯的应用实战(贝叶斯分类)莺尾花数据库函数导入数据导入和分析模型训练模型预测原理简析模拟离散数据集朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯法=贝叶斯定理+特征条件独立。朴素贝叶斯(NaiveBayes)是基于贝叶斯定理的概率分类算法。该算法假设特征之间相互独立,即某个特征
- 可逆矩阵的概念、定理、判断条件和性质(线性代数基础)
盼达思文体科创
考研数二复习线性代数矩阵机器学习考研学习人工智能
可逆矩阵的概念、定理、判断条件和性质可逆矩阵的概念定义:设AAA为nnn阶矩阵,如果存在nnn阶矩阵BBB使得下式成立:AB=BA=E(E是单位矩阵)AB=BA=E(E是单位矩阵)AB=BA=E(E是单位矩阵)则称AAA是可逆矩阵或者非奇异矩阵,其中BBB是AAA的逆矩阵,记做A−1=BA^{-1}=BA−1=B个人理解:事实上,该公式和数学中倒数的概念很像。对于一个非零实数aaa,它的倒数定义为
- 深度探索:机器学习中的粒子群优化算法(PBMT)原理及应用
生瓜蛋子
机器学习机器学习算法人工智能
目录一、引言与背景二、定理三、算法原理四、算法实现五、优缺点分析优点:缺点:六、案例应用七、对比与其他算法八、结论与展望一、引言与背景随着机器学习技术的迅速发展,优化算法在模型训练、特征选择、参数调优等多个环节扮演着至关重要的角色。粒子群优化(ParticleSwarmOptimization,PBMT)作为一类灵感源自鸟群觅食行为的群体智能优化算法,自1995年提出以来,因其简单、高效的特点,在
- 二项分布:成功与失败概率的交织呈现
进一步有进一步的欢喜
二项分布几何分布伯努利分布概率论深度学习
引言在概率论与数理统计的庞大体系中,二项分布占据着举足轻重的地位。它作为一种离散型概率分布,广泛应用于众多领域,从自然科学到社会科学,从工业生产到日常生活,都能看到它的身影。深入探究二项分布,不仅有助于我们理解随机现象背后的数学原理,还能为解决实际问题提供强大的工具。而回顾其发展历程,能让我们更全面地把握这一概念的来龙去脉。同时,了解二项分布与其他相关概念,如几何分布、二项式定理的联系,将进一步加
- PyTorch动态计算图:如何灵活构建复杂模型
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PyTorch动态计算图:如何灵活构建复杂模型关键词:PyTorch、动态计算图、自动微分、反向传播、神经网络、模型构建、计算图优化文章目录PyTorch动态计算图:如何灵活构建复杂模型1.背景介绍1.1深度学习框架的发展1.2静态图与动态图的对比1.3PyTorch的崛起及其优势2.核心概念与联系2.1PyTorch中的张量(Tensor)2.2自动微分(Autograd)机制2.3动态计算图的
- 算法:蓝桥杯——四平方和(C语言)
_DonQuijote
C语言算法c语言算法
目录问题说明设计思路程序代码运行结果反思什么是二分法?什么是打表法?数组排序函数qsort()问题说明四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和,如果把0包括进去,就正好可以表示为4个数的平方和。比如:5=0^2+0^2+1^2+2^27=1^2+1^2+1^2+2^2(^符号表示乘方的意思)对于一个给定的正整数,可能存在多种平方和的表示法。要求你对4个数排序:
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {