每日一题:leetcode1

**

题目

**
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

python3代码

每日一题:leetcode1_第1张图片
过于简单,耗时较多,答案采用哈希表

哈希表

哈希表哦实质是哈希函数(散列函数)。即如何构建一个确定的映射,它能把关键字映射到一个唯一的存储位置。这种映射应该是我们可以进行计算的。已知关键字,我们应该能算出其地址;反之,已知地址,我们可以检索到对应的关键字。一旦建立起这种关系,那么给定关键字,我就能直接利用这个映射(即所谓的哈希函数)直接算出其地址并寻址。这可大大缩减确定关键字存储位置所花的时间。

设要存储对象的个数为num, 那么我们就用len个内存单元来存储它们(len>=num);
以每个对象ki的关键字为自变量,用一个函数h(ki)来映射出ki的内存地址,也就是ki的下标,将ki对象的元素内容全部存入这个地址中就行了。这个就是Hash的基本思路。

Hash为什么这么想呢?换言之,为什么要用一个函数来映射出它们的地址单元呢?
this is a good question.明白了这个问题,Hash不再是问题。

示例
现在我要你存储4个元素 13 7 14 11
显然,我们可以用数组来存。也就是:a[1] = 13; a[2] = 7; a[3] = 14; a[4] = 11;

当然,我们也可以用Hash来存。下面给出一个简单的Hash存储:
先来确定那个函数。我们就用h(ki) = ki%5;(这个函数不用纠结,我们现在的目的是了解为什么要有这么一个函数)。那么

对于第一个元素 h(13) = 13%5 = 3; 也就是说13的下标为3;即Hash[3] = 13;
对于第二个元素 h(7) = 7 % 5 = 2; 也就是说7的下标为2; 即Hash[2] = 7;
同理,Hash[4] = 14; Hash[1] = 11;

现在我要你查找11这个元素是否存在。你会怎么做呢?
当然,对于数组来说,那是相当的简单,一个for循环就可以了。也就是说我们要找4次。这是很笨的办法,因为为了找一个数需要把整个序列循环一遍才行,太慢!

下面我们来用Hash找一下。

首先,我们将要找的元素11代入刚才的函数中来映射出它所在的地址单元。也就是h(11) = 11%5 = 1 了。下面我们来比较一下Hash[1]?=11, 这个问题就很简单了。

也就是说我们就找了1次。我咧个去, 这个就是Hash的妙处了。

采用哈希表python3代码

enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

每日一题:leetcode1_第2张图片

两者比较

每日一题:leetcode1_第3张图片

你可能感兴趣的:(算法,python,列表)