基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化

文章目录

    • 22:FineBI配置数据集
    • 23:FineBI构建报表
    • 24:FineBI实时配置测试
    • 附录二:离线消费者完整代码

22:FineBI配置数据集

  • 目标实现FineBI访问MySQL结果数据集的配置

  • 实施

    • 安装FineBI

      • 参考《FineBI Windows版本安装手册.docx》安装FineBI

        image-20210906214702837

    • 配置连接

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第1张图片

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第2张图片

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第3张图片

      数据连接名称:Momo
      用户名:root
      密码:自己MySQL的密码
      数据连接URL:jdbc:mysql://node1:3306/momo?useUnicode=true&characterEncoding=utf8
      

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第4张图片

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第5张图片

    • 数据准备

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第6张图片

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第7张图片

      基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第8张图片

      SELECT  
       id, momo_totalcount,momo_province,momo_username,momo_msgcount,
       CASE momo_grouptype WHEN '1' THEN '总消息量' WHEN '2' THEN '各省份发送量'  WHEN '3' THEN '各省份接收量'
      	WHEN '4' THEN '各用户发送量' WHEN '5' THEN '各用户接收量' END AS momo_grouptype
      FROM  momo_count
      
  • 小结

    • 实现FineBI访问MySQL结果数据集的配置

23:FineBI构建报表

  • 目标实现FineBI实时报表构建

  • 路径

    • step1:实时报表构建
    • step2:实时报表配置
    • step3:实时刷新测试
  • 实施

    • 实时报表构建

      • 新建仪表盘

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第9张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第10张图片

      • 添加标题

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第11张图片

      • 实时总消息数

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第12张图片

      • 发送消息最多的Top10用户

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第13张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第14张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第15张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第16张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第17张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第18张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第19张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第20张图片

      • 接受消息最多的Top10用户

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第21张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第22张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第23张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第24张图片

      • 各省份发送消息Top10

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第25张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第26张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第27张图片

      • 各省份接收消息Top10

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第28张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第29张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第30张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第31张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第32张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第33张图片

      • 各省份总消息量

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第34张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第35张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第36张图片

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第37张图片

  • 小结

    • 实现FineBI实时报表构建

24:FineBI实时配置测试

  • 目标:实现实时报表测试

  • 实施

    • 实时报表配置

      • 官方文档:https://help.fanruan.com/finebi/doc-view-363.html

      • 添加jar包:将jar包放入FineBI安装目录的 webapps\webroot\WEB-INF\lib目录下

        基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第38张图片

        • 注意:如果提示已存在,就选择覆盖
      • 添加JS文件

        • 创建js文件:refresh.js

          setTimeout(function () {
           var b =document.title;
           var a =BI.designConfigure.reportId;//获取仪表板id
           //这里要指定自己仪表盘的id
           if (a=="d574631848bd4e33acae54f986d34e69") {
            setInterval(function () {
             BI.SharingPool.put("controlFilters", BI.Utils.getControlCalculations());
             //Data.SharingPool.put("controlFilters", BI.Utils.getControlCalculations());
             BI.Utils.broadcastAllWidgets2Refresh(true);
            }, 3000);//5000000为定时刷新的频率,单位ms
           }
          }, 2000)
          
        • 将创建好的refresh.js文件放至 FineBI 安装目录%FineBI%/webapps/webroot中

          基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第39张图片

        • 关闭FineBI缓存,然后关闭FineBI

          基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第40张图片

        • 修改jar包,添加js

          基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第41张图片

          基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第42张图片

          基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第43张图片

          基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第44张图片

           
          
          
        
        
      • 重启FineBI

  • 实时刷新测试

    • 清空MySQL结果表

    • 启动Flink程序:运行MoMoFlinkCount

    • 启动Flume程序

      cd /export/server/flume-1.9.0-bin
      bin/flume-ng agent -c conf/ -n a1 -f usercase/momo_mem_kafka.properties -Dflume.root.logger=INFO,console
      
    • 启动模拟数据

      java -jar /export/data/momo_init/MoMo_DataGen.jar \
      /export/data/momo_init/MoMo_Data.xlsx \
      /export/data/momo_data/ \
      10
      
      
    - 观察报表
    
    

基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第45张图片

基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化_第46张图片

  • 小结

    • 实现FineBI实时测试




## 附录一:Maven依赖

​```xml
  
  
      
          aliyun
          http://maven.aliyun.com/nexus/content/groups/public/
          true
          
              false
              never
          
      
  
  
      
      
          org.apache.hbase
          hbase-client
          2.1.0
      
      
      
          org.apache.kafka
          kafka-clients
          2.4.1
      
      
      
          com.alibaba
          fastjson
          1.2.62
      
      
      
          org.apache.flink
          flink-java
          1.10.0
      
      
          org.apache.flink
          flink-streaming-java_2.11
          1.10.0
      
      
          org.apache.flink
          flink-runtime-web_2.11
          1.10.0
      
      
      
          org.apache.flink
          flink-shaded-hadoop-2-uber
          2.7.5-10.0
      
      
          org.apache.flink
          flink-connector-kafka_2.11
          1.10.0
      
      
          org.apache.flink
          flink-jdbc_2.11
          1.10.0
      
      
          org.apache.bahir
          flink-connector-redis_2.11
          1.0
      
      
      
          org.apache.httpcomponents
          httpclient
          4.5.4
      
      
      
          mysql
          mysql-connector-java
          5.1.38
      
  

  
      
          
              org.apache.maven.plugins
              maven-compiler-plugin
              3.1
              
                  1.8
                  1.8
              
          
      
  

附录二:离线消费者完整代码

package bigdata.itcast.cn.momo.offline;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.MD5Hash;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.Duration;
import java.util.*;

/**
 * @ClassName MomoKafkaToHbase
 * @Description TODO 离线场景:消费Kafka的数据写入Hbase
 * @Create By     Maynor
 */
public class MomoKafkaToHbase {

    private  static SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
    private static Connection conn;
    private static Table table;
    private static TableName tableName = TableName.valueOf("MOMO_CHAT:MOMO_MSG");//表名
    private static byte[] family = Bytes.toBytes("C1");//列族

    //todo:2-构建Hbase连接
    //静态代码块: 随着类的加载而加载,一般只会加载一次,避免构建多个连接影响性能
    static{
        try {
            //构建配置对象
            Configuration conf = HBaseConfiguration.create();
            conf.set("hbase.zookeeper.quorum","node1:2181,node2:2181,node3:2181");
            //构建连接
            conn = ConnectionFactory.createConnection(conf);
            //获取表对象
            table = conn.getTable(tableName);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }


    public static void main(String[] args) throws Exception {
        //todo:1-构建消费者,获取数据
        consumerKafkaToHbase();
//        String momoRowkey = getMomoRowkey("2020-08-13 12:30:00", "13071949728", "17719988692");
//        System.out.println(momoRowkey);
    }

    /**
     * 用于消费Kafka的数据,将合法数据写入Hbase
     */
    private static void consumerKafkaToHbase() throws Exception {
        //构建配置对象
        Properties props = new Properties();
        //指定服务端地址
        props.setProperty("bootstrap.servers", "node1:9092,node2:9092,node3:9092");
        //指定消费者组的id
        props.setProperty("group.id", "momo1");
        //关闭自动提交
        props.setProperty("enable.auto.commit", "false");
        //指定K和V反序列化的类型
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        //构建消费者的连接
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        //指定订阅哪些Topic
        consumer.subscribe(Arrays.asList("MOMO_MSG"));
        //持续拉取数据
        while (true) {
            //向Kafka请求拉取数据,等待Kafka响应,在100ms以内如果响应,就拉取数据,如果100ms内没有响应,就提交下一次请求: 100ms为等待Kafka响应时间
            //拉取到的所有数据:多条KV数据都在ConsumerRecords对象,类似于一个集合
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            //todo:3-处理拉取到的数据:打印
            //取出每个分区的数据进行处理
            Set<TopicPartition> partitions = records.partitions();//获取本次数据中所有分区
            //对每个分区的数据做处理
            for (TopicPartition partition : partitions) {
                List<ConsumerRecord<String, String>> partRecords = records.records(partition);//取出这个分区的所有数据
                //处理这个分区的数据
                long offset = 0;
                for (ConsumerRecord<String, String> record : partRecords) {
                    //获取Topic
                    String topic = record.topic();
                    //获取分区
                    int part = record.partition();
                    //获取offset
                    offset = record.offset();
                    //获取Key
                    String key = record.key();
                    //获取Value
                    String value = record.value();
                    System.out.println(topic + "\t" + part + "\t" + offset + "\t" + key + "\t" + value);
                    //将Value数据写入Hbase
                    if(value != null && !"".equals(value) && value.split("\001").length == 20 ){
                        writeToHbase(value);
                    }
                }
                //手动提交分区的commit offset
                Map<TopicPartition, OffsetAndMetadata> offsets = Collections.singletonMap(partition,new OffsetAndMetadata(offset+1));
                consumer.commitSync(offsets);
            }
        }
    }

    /**
     * 用于实现具体的写入Hbase的方法
     * @param value
     */
    private static void writeToHbase(String value) throws Exception {
        //todo:3-写入Hbase
        //切分数据
        String[] items = value.split("\001");
        String stime = items[0];
        String sender_accounter = items[2];
        String receiver_accounter = items[11];
        //构建rowkey
        String rowkey = getMomoRowkey(stime,sender_accounter,receiver_accounter);
        //构建Put
        Put put = new Put(Bytes.toBytes(rowkey));
        //添加列
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("msg_time"),Bytes.toBytes(items[0]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_nickyname"),Bytes.toBytes(items[1]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_account"),Bytes.toBytes(items[2]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_sex"),Bytes.toBytes(items[3]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_ip"),Bytes.toBytes(items[4]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_os"),Bytes.toBytes(items[5]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_phone_type"),Bytes.toBytes(items[6]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_network"),Bytes.toBytes(items[7]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_gps"),Bytes.toBytes(items[8]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_nickyname"),Bytes.toBytes(items[9]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_ip"),Bytes.toBytes(items[10]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_account"),Bytes.toBytes(items[11]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_os"),Bytes.toBytes(items[12]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_phone_type"),Bytes.toBytes(items[13]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_network"),Bytes.toBytes(items[14]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_gps"),Bytes.toBytes(items[15]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_sex"),Bytes.toBytes(items[16]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("msg_type"),Bytes.toBytes(items[17]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("distance"),Bytes.toBytes(items[18]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("message"),Bytes.toBytes(items[19]));
        //执行写入
        table.put(put);
    }

    /**
     * 基于消息时间、发送人id、接受人id构建rowkey
     * @param stime
     * @param sender_accounter
     * @param receiver_accounter
     * @return
     * @throws Exception
     */
    private static String getMomoRowkey(String stime, String sender_accounter, String receiver_accounter) throws Exception {
        //转换时间戳
        long time = format.parse(stime).getTime();
        String suffix = sender_accounter+"_"+receiver_accounter+"_"+time;
        //构建MD5
        String prefix = MD5Hash.getMD5AsHex(Bytes.toBytes(suffix)).substring(0,8);
        //合并返回
        return prefix+"_"+suffix;
    }
}

你可能感兴趣的:(#,Flink,flume,kafka,hbase)