https://github.com/Chufeng-Jiang/Python-Linear-Algebra-for-Beginner/tree/main
theta = math.pi / 3
T = Matrix([[math.cos(theta), math.sin(theta)],
[-math.sin(theta), math.cos(theta)]])
from .Vector import Vector
class Matrix:
def __init__(self, list2d):
self._values = [row[:] for row in list2d]
@classmethod
def zero(cls, r, c):
"""返回一个r行c列的零矩阵"""
return cls([[0] * c for _ in range(r)])
@classmethod
def identity(cls, n):
"""返回一个n行n列的单位矩阵"""
m = [[0]*n for _ in range(n)]
for i in range(n):
m[i][i] = 1;
return cls(m)
def T(self):
"""返回矩阵的转置矩阵"""
return Matrix([[e for e in self.col_vector(i)]
for i in range(self.col_num())])
def __add__(self, another):
"""返回两个矩阵的加法结果"""
assert self.shape() == another.shape(), \
"Error in adding. Shape of matrix must be same."
return Matrix([[a + b for a, b in zip(self.row_vector(i), another.row_vector(i))]
for i in range(self.row_num())])
def __sub__(self, another):
"""返回两个矩阵的减法结果"""
assert self.shape() == another.shape(), \
"Error in subtracting. Shape of matrix must be same."
return Matrix([[a - b for a, b in zip(self.row_vector(i), another.row_vector(i))]
for i in range(self.row_num())])
def dot(self, another):
"""返回矩阵乘法的结果"""
if isinstance(another, Vector):
# 矩阵和向量的乘法
assert self.col_num() == len(another), \
"Error in Matrix-Vector Multiplication."
return Vector([self.row_vector(i).dot(another) for i in range(self.row_num())])
if isinstance(another, Matrix):
# 矩阵和矩阵的乘法
assert self.col_num() == another.row_num(), \
"Error in Matrix-Matrix Multiplication."
return Matrix([[self.row_vector(i).dot(another.col_vector(j)) for j in range(another.col_num())]
for i in range(self.row_num())])
def __mul__(self, k):
"""返回矩阵的数量乘结果: self * k"""
return Matrix([[e * k for e in self.row_vector(i)]
for i in range(self.row_num())])
def __rmul__(self, k):
"""返回矩阵的数量乘结果: k * self"""
return self * k
def __truediv__(self, k):
"""返回数量除法的结果矩阵:self / k"""
return (1 / k) * self
def __pos__(self):
"""返回矩阵取正的结果"""
return 1 * self
def __neg__(self):
"""返回矩阵取负的结果"""
return -1 * self
def row_vector(self, index):
"""返回矩阵的第index个行向量"""
return Vector(self._values[index])
def col_vector(self, index):
"""返回矩阵的第index个列向量"""
return Vector([row[index] for row in self._values])
def __getitem__(self, pos):
"""返回矩阵pos位置的元素"""
r, c = pos
return self._values[r][c]
def size(self):
"""返回矩阵的元素个数"""
r, c = self.shape()
return r * c
def row_num(self):
"""返回矩阵的行数"""
return self.shape()[0]
__len__ = row_num
def col_num(self):
"""返回矩阵的列数"""
return self.shape()[1]
def shape(self):
"""返回矩阵的形状: (行数, 列数)"""
return len(self._values), len(self._values[0])
def __repr__(self):
return "Matrix({})".format(self._values)
__str__ = __repr__
import matplotlib.pyplot as plt
from playLA.Matrix import Matrix
from playLA.Vector import Vector
import math
if __name__ == "__main__":
points = [[0, 0], [0, 5], [3, 5], [3, 4], [1, 4], [1, 3], [2, 3], [2, 2], [1, 2], [1, 0]]
x = [point[0] for point in points]
y = [point[1] for point in points]
plt.figure(figsize=(5, 5))
plt.xlim(-10, 10)
plt.ylim(-10, 10)
plt.plot(x, y)
# plt.show()
P = Matrix(points)
# T = Matrix([[2, 0], [0, 1.5]])
# T = Matrix([[1, 0], [0, -1]])
# T = Matrix([[-1, 0], [0, 1]])
# T = Matrix([[-1, 0], [0, -1]])
# T = Matrix([[1, 0.5], [0, 1]])
# T = Matrix([[1, 0], [0.5, 1]])
theta = math.pi / 3
T = Matrix([[math.cos(theta), math.sin(theta)], [-math.sin(theta), math.cos(theta)]])
# 逆时针旋转90度
# theta = math.pi / -2
# T = Matrix([[math.cos(theta), math.sin(theta)], [-math.sin(theta), math.cos(theta)]])
# 根据矩阵表示空间的法则,直接写出的逆时针旋转90度的变换矩阵
#T = Matrix([[0, -1], [1, 0]])
P2 = T.dot(P.T())
plt.plot([P2.col_vector(i)[0] for i in range(P2.col_num())],
[P2.col_vector(i)[1] for i in range(P2.col_num())])
plt.show()
import numpy as np
if __name__ == "__main__":
# 矩阵的创建
A = np.array([[1, 2], [3, 4]])
print(A)
# 矩阵的属性
print(A.shape)
print(A.T)
# 获取矩阵的元素
print(A[1, 1])
print(A[0])
print(A[:, 0])
print(A[1, :])
# 矩阵的基本运算
B = np.array([[5, 6], [7, 8]])
print(A + B)
print(A - B)
print(10 * A)
print(A * 10)
print(A * B)
print(A.dot(B))
p = np.array([10, 100])
print(A + p)
print(A + 1)
print(A.dot(p))
# 单位矩阵
I = np.identity(2)
print(I)
print(A.dot(I))
print(I.dot(A))
# 逆矩阵
invA = np.linalg.inv(A)
print(invA)
print(invA.dot(A))
print(A.dot(invA))
# C = np.array([[1, 2, 3], [4, 5, 6]])
# np.linalg.inv(C)