#include
#include
#include
#include
#include
#define PORT 8080
#define BUFFER_SIZE 2048
void handle_client(int client_socket) {
char buffer[BUFFER_SIZE];
recv(client_socket, buffer, sizeof(buffer) - 1, 0);
printf("Received request:\n%s\n", buffer);
char response[] =
"HTTP/1.1 200 OK\r\n"
"Content-Type: text/plain\r\n"
"Content-Length: 15\r\n"
"Connection: close\r\n\r\n"
"Hello, World!\r\n";
send(client_socket, response, sizeof(response) - 1, 0);
close(client_socket);
}
int main() {
int server_socket, client_socket;
struct sockaddr_in server_address, client_address;
socklen_t client_len;
server_socket = socket(AF_INET, SOCK_STREAM, 0);
if (server_socket == -1) {
perror("Could not create socket");
exit(1);
}
server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = INADDR_ANY;
server_address.sin_port = htons(PORT);
if (bind(server_socket, (struct sockaddr *)&server_address, sizeof(server_address)) == -1) {
perror("Bind failed");
exit(1);
}
if (listen(server_socket, 10) == -1) {
perror("Listen failed");
exit(1);
}
printf("HTTP server is running on port %d ...\n", PORT);
while (1) {
client_len = sizeof(client_address);
client_socket = accept(server_socket, (struct sockaddr *)&client_address, &client_len);
if (client_socket == -1) {
perror("Accept failed");
continue;
}
handle_client(client_socket);
}
close(server_socket);
return 0;
}
#include
#include
#include
#include
#include
#define SERVER_PORT 8080
#define BUFFER_SIZE 2048
int main(int argc, char *argv[]) {
int client_socket;
struct sockaddr_in server_address;
char buffer[BUFFER_SIZE];
// 检查命令行参数
if (argc != 2) {
printf("Usage: %s \n" , argv[0]);
exit(1);
}
client_socket = socket(AF_INET, SOCK_STREAM, 0);
if (client_socket == -1) {
perror("Could not create socket");
exit(1);
}
server_address.sin_family = AF_INET;
server_address.sin_port = htons(SERVER_PORT);
if (inet_pton(AF_INET, argv[1], &server_address.sin_addr) <= 0) {
perror("inet_pton() failed");
exit(1);
}
// 连接到服务器
if (connect(client_socket, (struct sockaddr *)&server_address, sizeof(server_address)) == -1) {
perror("Connect failed");
close(client_socket);
exit(1);
}
// 向服务器发送HTTP请求
char request[] = "GET / HTTP/1.1\r\nHost: localhost\r\n\r\n";
send(client_socket, request, strlen(request), 0);
// 接收服务器响应
int bytes_received = recv(client_socket, buffer, BUFFER_SIZE - 1, 0);
if (bytes_received == -1) {
perror("Error receiving data");
close(client_socket);
exit(1);
}
buffer[bytes_received] = '\0';
printf("Received from server:\n%s\n", buffer);
close(client_socket);
return 0;
}
或者在浏览器或者使用curl工具访问http://localhost:8080,也能够看到来自服务器的“Hello, World!”响应。
curl http://localhost:8080
curl -X POST -d "param1=value1¶m2=value2" http://localhost:8080
#include
#include
#include
#include
#include
#define PORT 8080
#define BUFFER_SIZE 2048
void handle_client(int server_socket, struct sockaddr_in *client_address, socklen_t client_len) {
char buffer[BUFFER_SIZE];
int bytes_received = recvfrom(server_socket, buffer, sizeof(buffer) - 1, 0, (struct sockaddr *)client_address, &client_len);
if (bytes_received == -1) {
perror("Error receiving data");
return;
}
buffer[bytes_received] = '\0';
printf("Received request from %s:%d\n%s\n", inet_ntoa(client_address->sin_addr), ntohs(client_address->sin_port), buffer);
char response[] = "Hello, World from UDP!";
sendto(server_socket, response, sizeof(response) - 1, 0, (struct sockaddr *)client_address, client_len);
}
int main() {
int server_socket;
struct sockaddr_in server_address, client_address;
socklen_t client_len;
server_socket = socket(AF_INET, SOCK_DGRAM, 0);
if (server_socket == -1) {
perror("Could not create socket");
exit(1);
}
server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = INADDR_ANY;
server_address.sin_port = htons(PORT);
if (bind(server_socket, (struct sockaddr *)&server_address, sizeof(server_address)) == -1) {
perror("Bind failed");
exit(1);
}
printf("UDP server is running on port %d...\n", PORT);
while (1) {
client_len = sizeof(client_address);
handle_client(server_socket, &client_address, client_len);
}
close(server_socket);
return 0;
}
#include
#include
#include
#include
#include
#define SERVER_PORT 8080
#define BUFFER_SIZE 2048
int main(int argc, char *argv[]) {
int client_socket;
struct sockaddr_in server_address;
char buffer[BUFFER_SIZE];
// 检查命令行参数
if (argc != 2) {
printf("Usage: %s \n" , argv[0]);
exit(1);
}
client_socket = socket(AF_INET, SOCK_DGRAM, 0);
if (client_socket == -1) {
perror("Could not create socket");
exit(1);
}
memset(&server_address, 0, sizeof(server_address));
server_address.sin_family = AF_INET;
server_address.sin_port = htons(SERVER_PORT);
if (inet_pton(AF_INET, argv[1], &server_address.sin_addr) <= 0) {
perror("inet_pton() failed");
exit(1);
}
// 向服务器发送消息
char message[] = "Hello, UDP Server!";
sendto(client_socket, message, strlen(message), 0, (struct sockaddr *)&server_address, sizeof(server_address));
// 接收来自服务器的响应
int bytes_received = recvfrom(client_socket, buffer, BUFFER_SIZE - 1, 0, NULL, NULL);
if (bytes_received == -1) {
perror("Error receiving data");
exit(1);
}
buffer[bytes_received] = '\0';
printf("Received from server: %s\n", buffer);
close(client_socket);
return 0;
}
或者使用以下命令向UDP服务器发送数据:
echo "Your message here" | nc -u -w1 localhost 8080
send()
和 recv()
适用于TCP而不是UDPTCP (Transmission Control Protocol) 是一个面向连接的协议。当我们谈论TCP连接时,我们指的是一个由客户端套接字和服务器套接字组成的持久的网络连接。这意味着,一旦建立了TCP连接,双方都知道对方的IP地址和端口号,因此不需要在每次数据交换时重新指定。
由于这种固定的连接特性,当我们想要通过已经建立的TCP连接发送或接收数据时,不需要再次指定远程的地址和端口。这就是为什么 send()
和 recv()
适用于TCP:它们只发送和接收数据,不涉及地址信息。
另一方面,UDP (User Datagram Protocol) 是一个无连接的协议。这意味着每次数据包的发送都是独立的,没有固定的连接或对端信息与其相关联。因此,当我们使用UDP发送数据时,需要指定要将数据发送到的地址和端口。这就是 sendto()
和 recvfrom()
的用途。
总结:
send()
和 recv()
。sendto()
和 recvfrom()
。当然,技术上可以为UDP使用 connect()
来设置默认的远程地址和端口,然后使用 send()
和 recv()
,但这样做是非典型的,并可能导致与UDP的无连接特性不一致的行为。
当我们说SOCK_STREAM
(如TCP)为我们提供了一个连续的字节流,并且没有内在的消息边界,这是什么意思呢?
连续的字节流:
send()
函数,发送三个字符串,它们可能会被接收端作为一个连续的字节流接收。没有内在的消息边界:
recv()
调用中接收到两个数据块的部分或全部。send()
,分别发送字符串"HELLO"和"WORLD",接收方可能需要多次recv()
调用来接收这些数据,或者可能在一个recv()
调用中接收到字符串"HELLOWORLD"。这种没有消息边界的特性与SOCK_DGRAM
(如UDP)形成了对比,在UDP中,每个sendto()
调用发送的数据都被视为一个独立的消息,且在接收端通过一个recvfrom()
调用完整地接收。
这就是为什么在使用TCP时,应用程序往往需要自己实现某种消息边界的机制,例如通过使用特定的分隔符、固定长度的头部或其他协议来定义消息的开始和结束。
SOCK_DGRAM
提供了一个有边界的服务。这意味着,当我们使用 SOCK_DGRAM
(如UDP)发送一个数据报,接收端会将这个数据报作为一个整体进行处理,不会将它与其他数据报合并或分割。每个 sendto()
调用对应一个完整且单独的消息,该消息在接收端使用一个 recvfrom()
调用完整接收。
换句话说,数据报协议保留了消息边界。例如,如果发送方调用了两次 sendto()
,接收方也必须调用两次 recvfrom()
来接收这两条消息。这与 SOCK_STREAM
(如TCP)不同,在流式协议中,数据是一个连续的字节流,没有内在的消息边界。
关于curl命令和nc命令的详细介绍以及网络编程中常用的函数说明,读者可移步至以下博客:
Linux- curl命令
Linux中的nc命令
Linux网络编程- recvfrom() & sendto()
Linux- 网络编程初探