原po:程序员小灰,仅供学习交流,侵删
https://mp.weixin.qq.com/s?__biz=MzIxMjE5MTE1Nw==&mid=2653195121&idx=1&sn=bf456092c1f1a5e728c8d0a571483dcd&chksm=8c99f9abbbee70bd427e1083f8a4064affd3138490e23666756a8e56061054040d6ebfb4bcce&scene=21#wechat_redirect
有趣有内涵的文章第一时间送达!
时间复杂度的意义
究竟什么是时间复杂度呢?让我们来想象一个场景:
某一天,小灰和大黄同时加入了一个公司......
一天过后,小灰和大黄各自交付了代码,两端代码实现的功能都差不多。
大黄的代码运行一次要花100毫秒,内存占用5MB。
小灰的代码运行一次要花100秒,内存占用500MB。
于是......
由此可见,衡量代码的好坏包括两个非常重要的指标:
1.运行时间
2.占用空间
基本操作执行次数
关于代码的基本操作执行次数,我们用四个生活中的场景来做一下比喻:
场景1. 给小灰一条长10寸的面包,小灰每3天吃掉1寸,那么吃掉整个面包需要几天?
答案自然是 3 X 10 = 30天。
如果面包的长度是 N 寸呢?
此时吃掉整个面包,需要 3 X n = 3n 天。
如果用一个函数来表达这个相对时间,可以记作 T(n) = 3n。
场景2. 给小灰一条长16寸的面包,小灰每5天吃掉面包剩余长度的一半,第一次吃掉8寸,第二次吃掉4寸,第三次吃掉2寸......那么小灰把面包吃得只剩下1寸,需要多少天呢?
这个问题翻译一下,就是数字16不断地除以2,除几次以后的结果等于1?这里要涉及到数学当中的对数,以2位底,16的对数,可以简写为log16。
因此,把面包吃得只剩下1寸,需要 5 X log16 = 5 X 4 = 20 天。
如果面包的长度是 N 寸呢?
需要 5 X logn = 5logn天,记作 T(n) = 5logn。
场景3. 给小灰一条长10寸的面包和一个鸡腿,小灰每2天吃掉一个鸡腿。那么小灰吃掉整个鸡腿需要多少天呢?
答案自然是2天。因为只说是吃掉鸡腿,和10寸的面包没有关系。
如果面包的长度是 N 寸呢?
无论面包有多长,吃掉鸡腿的时间仍然是2天,记作 T(n) = 2。
场景4. 给小灰一条长10寸的面包,小灰吃掉第一个一寸需要1天时间,吃掉第二个一寸需要2天时间,吃掉第三个一寸需要3天时间.....每多吃一寸,所花的时间也多一天。那么小灰吃掉整个面包需要多少天呢?
答案是从1累加到10的总和,也就是55天。
如果面包的长度是 N 寸呢?
此时吃掉整个面包,需要 1+2+3+......+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。
记作 T(n) = 0.5n^2 + 0.5n。
上面所讲的是吃东西所花费的相对时间,这一思想同样适用于对程序基本操作执行次数的统计。刚才的四个场景,分别对应了程序中最常见的四种执行方式:
场景1, T(n) = 3n,执行次数是线性的。
1. `void eat1(int n){`
2. `for(int i=0; i
场景2, T(n) = 5logn,执行次数是对数的。
3. `void eat2(int n){`
4. `for(int i=1; i
场景3,T(n) = 2,执行次数是常量的。
3. `void eat3(int n){`
4. `System.out.println("等待一天");`
5. `System.out.println("吃一个鸡腿");`
6. `}`
场景4,T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式。
3. `void eat4(int n){`
4. `for(int i=0; i
渐进时间复杂度
有了基本操作执行次数的函数 T(n),是否就可以分析和比较一段代码的运行时间了呢?还是有一定的困难。
比如算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。
所以,这时候有了渐进****时间复杂度(asymptotic time complectiy)的概念,官方的定义如下:
若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。
记作 ****T(n)= O(f(n)),称O(f(n))** 为算法的渐进时间复杂度,简称时间复杂度。**
渐进时间复杂度用大写O来表示,所以也被称为大O表示法。
如何推导出时间复杂度呢?有如下几个原则:
- 如果运行时间是常数量级,用常数1表示。
只保留时间函数中的最高阶项
如果最高阶项存在,则省去最高阶项前面的系数。
让我们回头看看刚才的四个场景。
场景1:
T(n) = 3n
最高阶项为3n,省去系数3,转化的时间复杂度为:
****T(n) = O(n)****
场景2:
T(n) = 5logn
最高阶项为5logn,省去系数5,转化的时间复杂度为:
****T(n) = O(logn)****
场景3:
T(n) = 2
只有常数量级,转化的时间复杂度为:
****T(n) = O(1)****
场景4:
T(n) = 0.5n^2 + 0.5n
最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:
****T(n) = O(n^2)****
这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:
****O(1)< ********O(logn)< ****O(n)< ****O(n^2)************
在编程的世界中有着各种各样的算法,除了上述的四个场景,还有许多不同形式的时间复杂度,比如:
********O(nlogn), ****O(n^3), ****O(m*n),O(2^n),O(n!)****************
今后遨游在代码的海洋里,我们会陆续遇到上述时间复杂度的算法。
****************时间复杂度的巨大差异****************
我们来举过一个栗子:
算法A的相对时间规模是T(n)= 100n,时间复杂度是O(n)
算法B的相对时间规模是T(n)= 5n2,时间复杂度是O(n2),
算法A运行在小灰家里的老旧电脑上,算法B运行在某台超级计算机上,运行速度是老旧电脑的100倍。
那么,随着输入规模 n 的增长,两种算法谁运行更快呢?
从表格中可以看出,当n的值很小的时候,算法A的运行用时要远大于算法B;当n的值达到1000左右,算法A和算法B的运行时间已经接近;当n的值越来越大,达到十万、百万时,算法A的优势开始显现,算法B则越来越慢,差距越来越明显。
这就是不同时间复杂度带来的差距。
几点补充:
小灰写这篇时间复杂度的科普时才意识到,对于基础概念的讲解,比讲解具体算法要困难得多。希望大家对本文多提出宝贵意见,感谢大家!