1.进程与线程
典型的UNIX/Linux进程可以看成只有一个控制线程:一个进程在同一时刻只做一件事情。有了多个控制线程后,在程序设计时可以把进程设计成在同一时刻做不止一件事,每个线程各自处理独立的任务。
线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
"进程——资源分配的最小单位,线程——程序执行的最小单位"
2.使用线程的理由:
总的来说就是:进程有独立的地址空间,线程没有单独的地址空间(同一进程内的线程共享进程的地址空间)。
使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种"昂贵"的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。据统计,总的说来,一个进程的开销大约是一个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较大的区别。
使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地方。
除了以上所说的优点外,不和进程比较,多线程程序作为一种多任务、并发的工作方式,当然有以下的优点:
3.Linux线程api
多线程开发在 Linux 平台上已经有成熟的 pthread 库支持。其涉及的多线程开发的最基本概念主要包含三点:线程,互斥锁,条件。其中,线程操作又分线程的创建,退出,等待 3 种。互斥锁则包括 4 种操作,分别是创建,销毁,加锁和解锁。条件操作有 5 种操作:创建,销毁,触发,广播和等待。其他的一些线程扩展概念,如信号灯等,都可以通过上面的三个基本元素的基本操作封装出来。详细请见下表:
线程创建相关API:
1. 线程创建
#includeint pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg); // 返回:若成功返回0,否则返回错误编号
当pthread_create成功返回时,由tidp指向的内存单元被设置为新创建线程的线程ID。attr参数用于定制各种不同的线程属性,暂可以把它设置为NULL,以创建默认属性的线程。
新创建的线程从start_rtn函数的地址开始运行,该函数只有一个无类型指针参数arg。如果需要向start_rtn函数传递的参数不止一个,那么需要把这些参数放到一个结构中,然后把这个结构的地址作为arg参数传入。
2. 线程退出
单个线程可以通过以下三种方式退出,在不终止整个进程的情况下停止它的控制流:
1)线程只是从启动例程中返回,返回值是线程的退出码。
2)线程可以被同一进程中的其他线程取消。
3)线程调用pthread_exit:
#includeint pthread_exit(void *rval_ptr);
rval_ptr是一个无类型指针,与传给启动例程的单个参数类似。进程中的其他线程可以通过调用pthread_join函数访问到这个指针。
3. 线程等待
#includeint pthread_join(pthread_t thread, void **rval_ptr); // 返回:若成功返回0,否则返回错误编号
调用这个函数的线程将一直阻塞,直到指定的线程调用pthread_exit、从启动例程中返回或者被取消。如果例程只是从它的启动例程返回i,rval_ptr将包含返回码。如果线程被取消,由rval_ptr指定的内存单元就置为PTHREAD_CANCELED。
可以通过调用pthread_join自动把线程置于分离状态,这样资源就可以恢复。如果线程已经处于分离状态,pthread_join调用就会失败,返回EINVAL。
如果对线程的返回值不感兴趣,可以把rval_ptr置为NULL。在这种情况下,调用pthread_join函数将等待指定的线程终止,但并不获得线程的终止状态。
4. 线程脱离
一个线程或者是可汇合(joinable,默认值),或者是脱离的(detached)。当一个可汇合的线程终止时,它的线程ID和退出状态将留存到另一个线程对它调用pthread_join。脱离的线程却像守护进程,当它们终止时,所有相关的资源都被释放,我们不能等待它们终止。如果一个线程需要知道另一线程什么时候终止,那就最好保持第二个线程的可汇合状态。
pthread_detach函数把指定的线程转变为脱离状态。
#includeint pthread_detach(pthread_t thread); // 返回:若成功返回0,否则返回错误编号
本函数通常由想让自己脱离的线程使用,就如以下语句:
pthread_detach(pthread_self());
5. 线程ID获取及比较
#includepthread_t pthread_self(void); // 返回:调用线程的ID
对于线程ID比较,为了可移植操作,我们不能简单地把线程ID当作整数来处理,因为不同系统对线程ID的定义可能不一样。我们应该要用下边的函数:
#includeint pthread_equal(pthread_t tid1, pthread_t tid2); // 返回:若相等则返回非0值,否则返回0
对于多线程程序来说,我们往往需要对这些多线程进行同步。同步(synchronization)是指在一定的时间内只允许某一个线程访问某个资源。而在此时间内,不允许其它的线程访问该资源。我们可以通过互斥锁(mutex),条件变量(condition variable)和读写锁(reader-writer lock)来同步资源。在这里,我们暂不介绍读写锁。
代码:
#include
#include
#include
//int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg);
struct Param{
int a;
char *p;
};
void *fun1(void *arg)
{
static char *p = "t1 run out";
// struct Param *param =(Param *)arg;
struct Param *param =(struct Param *)arg;
printf("t1 :%ld thread is created \n",(unsigned long)pthread_self());
printf("t1:param.a:%d\n",param->a);
printf("t1:param.p:%s\n",param->p);
pthread_exit((void *)p);
}
int main()
{
int ret;
// char **pret = NULL;
char **pret = (char **)malloc(sizeof(char *));
struct Param param;
param.a = 100;
param.p = "Qing Yuan handsome!!";
// int param = 1011;
// char *chparam = "Qing Yuan handsome!!";
pthread_t t1;
if((ret = pthread_create(&t1,NULL,fun1,(void *)¶m)) == 0){
printf("t1 is created \n ");
}
printf("main : %ld \n",(unsigned long )pthread_self());
pthread_join(t1,(void **)pret);
printf("main t1 quit :%s\n",*pret);
return 0;
}
结果:
推荐线程博文:https://www.cnblogs.com/xiehongfeng100/p/4620852.html