你见过的最全面的Python重点知识总结!

由于总结了太多的东西,所以篇幅有点长,这也是作者"缝缝补补"总结了好久的东西,强烈建议收藏再慢慢看~

Py2 VS Py3

Py2 和 Py3 的差别

  • print 成为了函数,python2 是关键字

  • 不再有 unicode 对象,默认 str 就是 unicode

  • python3 除号返回浮点数

  • 没有了long类型

  • xrange 不存在,range 替代了 xrange

  • 可以使用中文定义函数名变量名

  • 高级解包和*解包

  • 限定关键字参数 *后的变量必须加入名字=值

  • raise from

  • iteritems 移除变成 items()

  • yield from 链接子生成器

  • asyncio,async/await 原生协程支持异步编程

  • 新增 enum, mock, ipaddress, concurrent.futures, asyncio urllib, selector

  • 不同枚举类间不能进行比较

  • 同一枚举类间只能进行相等的比较

  • 枚举类的使用(编号默认从1开始)

  • 为了避免枚举类中相同枚举值的出现,可以使用@unique装饰枚举类

#枚举的注意事项  
from enum import Enum  
  
class COLOR(Enum):  
    YELLOW=1  
#YELLOW=2#会报错  
    GREEN=1#不会报错,GREEN可以看作是YELLOW的别名  
    BLACK=3  
    RED=4  
print(COLOR.GREEN)#COLOR.YELLOW,还是会打印出YELLOW  
for i in COLOR:#遍历一下COLOR并不会有GREEN  
    print(i)  
#COLOR.YELLOW\nCOLOR.BLACK\nCOLOR.RED\n怎么把别名遍历出来  
for i in COLOR.__members__.items():  
    print(i)  
# output:('YELLOW', )\n('GREEN', )\n('BLACK', )\n('RED', )  
for i in COLOR.__members__:  
    print(i)  
# output:YELLOW\nGREEN\nBLACK\nRED  
  
#枚举转换  
#最好在数据库存取使用枚举的数值而不是使用标签名字字符串  
#在代码里面使用枚举类  
a=1  
print(COLOR(a))# output:COLOR.YELLOW  

py2/3 转换工具

  • six 模块:兼容 pyton2 和 pyton3 的模块

  • 2to3 工具:改变代码语法版本

  • __future__:使用下一版本的功能

类库相关

常用库

  • 必须知道的 collectionshttps://segmentfault.com/a/1190000017385799

  • python排 序操作及 heapq 模块https://segmentfault.com/a/1190000017383322

  • itertools 模块超实用方法https://segmentfault.com/a/1190000017416590

不常用但很重要的库

  • dis(代码字节码分析)

  • inspect(生成器状态)

  • cProfile(性能分析)

  • bisect(维护有序列表)

  • fnmatch

  • fnmatch(string,“*.txt”) # win下不区分大小写

  • fnmatch 根据系统决定

  • fnmatchcase 完全区分大小写

  • timeit(代码执行时间)

def isLen(strString):  
    #还是应该使用三元表达式,更快  
    return True if len(strString)>6 else False  
  
def isLen1(strString):  
    #这里注意false和true的位置  
    return [False,True][len(strString)>6]  
import timeit  
print(timeit.timeit('isLen1("5fsdfsdfsaf")',setup="from __main__ import isLen1"))  
  
print(timeit.timeit('isLen("5fsdfsdfsaf")',setup="from __main__ import isLen"))  
  • contextlib

  • @contextlib.contextmanager 使生成器函数变成一个上下文管理器

  • types(包含了标准解释器定义的所有类型的类型对象,可以将生成器函数修饰为异步模式)

import types  
types.coroutine #相当于实现了__await__  
  • html(实现对html的转义)
import html  
html.escape("

I'm Jim

"
) # output:'<h1>I'm Jim</h1>' html.unescape('<h1>I'm Jim</h1>') #

I'm Jim

  • mock(解决测试依赖)

  • concurrent(创建进程池和线程池)

from concurrent.futures import ThreadPoolExecutor  
  
pool = ThreadPoolExecutor()  
task = pool.submit(函数名,(参数)) #此方法不会阻塞,会立即返回  
task.done()#查看任务执行是否完成  
task.result()#阻塞的方法,查看任务返回值  
task.cancel()#取消未执行的任务,返回True或False,取消成功返回True  
task.add_done_callback()#回调函数  
task.running()#是否正在执行     task就是一个Future对象  
  
for data in pool.map(函数,参数列表):#返回已经完成的任务结果列表,根据参数顺序执行  
    print(返回任务完成得执行结果data)  
  
from concurrent.futures import as_completed  

as_completed(任务列表)#返回已经完成的任务列表,完成一个执行一个

wait(任务列表,return_when=条件)#根据条件进行阻塞主线程,有四个条件

  • selector(封装select,用户多路复用io编程)

  • asyncio

future=asyncio.ensure_future(协程)  等于后面的方式  future=loop.create_task(协程)  
future.add_done_callback()添加一个完成后的回调函数  
loop.run_until_complete(future)  
future.result()查看写成返回结果  
  
asyncio.wait()接受一个可迭代的协程对象  
asynicio.gather(*可迭代对象,*可迭代对象)    两者结果相同,但gather可以批量取消,gather对象.cancel()  
  
一个线程中只有一个loop  
  
在loop.stop时一定要loop.run_forever()否则会报错  
loop.run_forever()可以执行非协程  
最后执行finally模块中 loop.close()  
  
asyncio.Task.all_tasks()拿到所有任务 然后依次迭代并使用任务.cancel()取消  
  
偏函数partial(函数,参数)把函数包装成另一个函数名  其参数必须放在定义函数的前面  
  
loop.call_soon(函数,参数)  
call_soon_threadsafe()线程安全      
loop.call_later(时间,函数,参数)  
在同一代码块中call_soon优先执行,然后多个later根据时间的升序进行执行  
  
如果非要运行有阻塞的代码  
使用loop.run_in_executor(executor,函数,参数)包装成一个多线程,然后放入到一个task列表中,通过wait(task列表)来运行  
  
通过asyncio实现http  
reader,writer=await asyncio.open_connection(host,port)  
writer.writer()发送请求  
async for data in reader:  
    data=data.decode("utf-8")  
    list.append(data)  
然后list中存储的就是html  
  
as_completed(tasks)完成一个返回一个,返回的是一个可迭代对象      
  
协程锁  
async with Lock():  

Python 进阶

  • 进程间通信:

  • Manager(内置了好多数据结构,可以实现多进程间内存共享)

from multiprocessing import Manager,Process  
def add_data(p_dict, key, value):  
    p_dict[key] = value  
  
if __name__ == "__main__":  
    progress_dict = Manager().dict()  
    from queue import PriorityQueue  
  
    first_progress = Process(target=add_data, args=(progress_dict, "bobby1", 22))  
    second_progress = Process(target=add_data, args=(progress_dict, "bobby2", 23))  
  
    first_progress.start()  
    second_progress.start()  
    first_progress.join()  
    second_progress.join()  
  
    print(progress_dict)  
  • Pipe(适用于两个进程)
from multiprocessing import Pipe,Process  
#pipe的性能高于queue  
def producer(pipe):  
    pipe.send("bobby")  
  
def consumer(pipe):  
    print(pipe.recv())  
  
if __name__ == "__main__":  
    recevie_pipe, send_pipe = Pipe()  
    #pipe只能适用于两个进程  
    my_producer= Process(target=producer, args=(send_pipe, ))  
    my_consumer = Process(target=consumer, args=(recevie_pipe,))  
  
    my_producer.start()  
    my_consumer.start()  
    my_producer.join()  
    my_consumer.join()  
  • Queue(不能用于进程池,进程池间通信需要使用Manager().Queue())
from multiprocessing import Queue,Process  
def producer(queue):  
    queue.put("a")  
    time.sleep(2)  
  
def consumer(queue):  
    time.sleep(2)  
    data = queue.get()  
    print(data)  
  
if __name__ == "__main__":  
    queue = Queue(10)  
    my_producer = Process(target=producer, args=(queue,))  
    my_consumer = Process(target=consumer, args=(queue,))  
    my_producer.start()  
    my_consumer.start()  
    my_producer.join()  
    my_consumer.join()  
  • 进程池
def producer(queue):  
    queue.put("a")  
    time.sleep(2)  
  
def consumer(queue):  
    time.sleep(2)  
    data = queue.get()  
    print(data)  
  
if __name__ == "__main__":  
    queue = Manager().Queue(10)  
    pool = Pool(2)  
  
    pool.apply_async(producer, args=(queue,))  
    pool.apply_async(consumer, args=(queue,))  
  
    pool.close()  
    pool.join()  
  • sys 模块几个常用方法

  • argv 命令行参数list,第一个是程序本身的路径

  • path 返回模块的搜索路径

  • modules.keys() 返回已经导入的所有模块的列表

  • exit(0) 退出程序

  • a in s or b in s or c in s简写

  • 采用any方式:all() 对于任何可迭代对象为空都会返回 True

# 方法一  
True in [i in s for i in [a,b,c]]  
# 方法二  
any(i in s for i in [a,b,c])  
# 方法三  
list(filter(lambda x:x in s,[a,b,c]))  
  • set集合运用

  • {1,2}.issubset({1,2,3})#判断是否是其子集

  • {1,2,3}.issuperset({1,2})

  • {}.isdisjoint({})#判断两个set交集是否为空,是空集则为True

  • 代码中中文匹配

  • [u4E00-u9FA5]匹配中文文字区间[一到龥]

  • 查看系统默认编码格式

import sys  
sys.getdefaultencoding()    # setdefaultencodeing()设置系统编码方式  
  • getattr VS getattribute
class A(dict):  
    def __getattr__(self,value):#当访问属性不存在的时候返回  
        return 2  
    def __getattribute__(self,item):#屏蔽所有的元素访问  
        return item  
  • 类变量是不会存入实例__dict__中的,只会存在于类的__dict__中

  • globals/locals(可以变相操作代码)

  • globals中保存了当前模块中所有的变量属性与值

  • locals中保存了当前环境中的所有变量属性与值

  • python变量名的解析机制(LEGB)

  • 本地作用域(Local)

  • 当前作用域被嵌入的本地作用域(Enclosing locals)

  • 全局/模块作用域(Global)

  • 内置作用域(Built-in)

  • 实现从1-100每三个为一组分组

print([[x for x in range(1,101)][i:i+3] for i in range(0,100,3)])  
  • 什么是元类?

  • 即创建类的类,创建类的时候只需要将metaclass=元类,元类需要继承type而不是object,因为type就是元类

type.__bases__  #(,)  
object.__bases__    #()  
type(object)    #  
class Yuan(type):  
        def __new__(cls,name,base,attr,*args,**kwargs):  
            return type(name,base,attr,*args,**kwargs)  
    class MyClass(metaclass=Yuan):  
        pass  
  • 什么是鸭子类型(即:多态)?

  • Python在使用传入参数的过程中不会默认判断参数类型,只要参数具备执行条件就可以执行

  • 深拷贝和浅拷贝

  • 深拷贝拷贝内容,浅拷贝拷贝地址(增加引用计数)

  • copy模块实现神拷贝

  • 单元测试

  • 一般测试类继承模块unittest下的TestCase

  • pytest模块快捷测试(方法以test_开头/测试文件以test_开头/测试类以Test开头,并且不能带有 init 方法)

  • coverage统计测试覆盖率

class MyTest(unittest.TestCase):  
    def tearDown(self):# 每个测试用例执行前执行  
        print('本方法开始测试了')  
  
    def setUp(self):# 每个测试用例执行之前做操作  
        print('本方法测试结束')  
  
    @classmethod  
    def tearDownClass(self):# 必须使用 @ classmethod装饰器, 所有test运行完后运行一次  
        print('开始测试')  
    @classmethod  
    def setUpClass(self):# 必须使用@classmethod 装饰器,所有test运行前运行一次  
        print('结束测试')  
  
    def test_a_run(self):  
        self.assertEqual(1, 1)  # 测试用例  
  • gil 会根据执行的字节码行数以及时间片释放 gil,gil 在遇到 io 的操作时候主动释放

  • 什么是 monkey patch?

  • 猴子补丁,在运行的时候替换掉会阻塞的语法修改为非阻塞的方法

  • 什么是自省(Introspection)?

  • 运行时判断一个对象的类型的能力,id,type,isinstance

  • python 是值传递还是引用传递?

  • 都不是,python是共享传参,默认参数在执行时只会执行一次

  • try-except-else-finally中 else 和 finally 的区别

  • else在不发生异常的时候执行,finally无论是否发生异常都会执行

  • except一次可以捕获多个异常,但一般为了对不同异常进行不同处理,我们分次捕获处理

  • GIL 全局解释器锁

  • 同一时间只能有一个线程执行,CPython(IPython)的特点,其他解释器不存在

  • cpu 密集型:多进程+进程池

  • io 密集型:多线程/协程

  • 什么是 Cython

  • 将 python 解释 成 C 代码工具

  • 生成器和迭代器

  • 实现__next__和__iter__方法的对象就是迭代器

  • 可迭代对象只需要实现__iter__方法

  • 使用生成器表达式或者yield的生成器函数(生成器是一种特殊的迭代器)

  • 什么是协程

  • 比线程更轻量的多任务方式

  • 实现方式

  • yield

  • async-awiat

  • dict 底层结构

  • 为了支持快速查找使用了哈希表作为底层结构

  • 哈希表平均查找时间复杂度为o(1)

  • CPython 解释器使用二次探查解决哈希冲突问题

  • Hash扩容和Hash冲突解决方案

  • 循环复制到新空间实现扩容

  • 冲突解决:

  • 链接法

  • 二次探查(开放寻址法):python使用

for gevent import monkey  
monkey.patch_all()  #将代码中所有的阻塞方法都进行修改,可以指定具体要修改的方法  
  • 判断是否为生成器或者协程
co_flags = func.__code__.co_flags  
  
# 检查是否是协程  
if co_flags & 0x180:  
    return func  
  
# 检查是否是生成器  
if co_flags & 0x20:  
    return func  
  • 斐波那契解决的问题及变形
#一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。  
#请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?  
#方式一:  
fib = lambda n: n if n <= 2 else fib(n - 1) + fib(n - 2)  
#方式二:  
def fib(n):  
    a, b = 0, 1  
    for _ in range(n):  
        a, b = b, a + b  
    return b  
  
#一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。  
fib = lambda n: n if n < 2 else 2 * fib(n - 1)  
  • 获取电脑设置的环境变量
import os  
os.getenv(env_name,None)#获取环境变量如果不存在为None  
  • 垃圾回收机制

  • 引用计数

  • 标记清除

  • 分代回收

#查看分代回收触发  
import gc  
gc.get_threshold()  #output:(700, 10, 10)  
  • True 和 False 在代码中完全等价于1和0,可以直接和数字进行计算,inf 表示无穷大

  • C10M/C10K

  • C10M:8核心cpu,64G内存,在10gbps的网络上保持1000万并发连接

  • C10K:1GHz CPU,2G内存,1gbps网络环境下保持1万个客户端提供FTP服务

  • yield from 与 yield 的区别:

  • yield from 跟的是一个可迭代对象,而 yield 后面没有限制

  • GeneratorExit 生成器停止时触发

  • 单下划线的几种使用

  • 在定义变量时,表示为私有变量

  • 在解包时,表示舍弃无用的数据

  • 在交互模式中表示上一次代码执行结果

  • 可以做数字的拼接(111_222_333)

  • 使用 brea k就不会执行 else

  • 10进制转2进制

def conver_bin(num):  
    if num == 0:  
        return num  
    re = []  
    while num:  
        num, rem = divmod(num,2)  
        re.append(str(rem))  
    return "".join(reversed(re))  
  conver_bin(10)  
  • list1 = [‘A’, ‘B’, ‘C’, ‘D’] 如何才能得到以list中元素命名的新列表 A=[],B=[],C=[],D=[]呢

list1 = [‘A’, ‘B’, ‘C’, ‘D’]

# 方法一  
for i in list1:  
    globals()[i] = []   # 可以用于实现python版反射  
  
# 方法二  
for i in list1:  
    exec(f'{i} = []')   # exec执行字符串语句  

  • memoryview与bytearray不常用,只是看到了记载一下
# bytearray是可变的,bytes是不可变的,memoryview不会产生新切片和对象  
a = 'aaaaaa'  
ma = memoryview(a)  
ma.readonly  # 只读的memoryview  
mb = ma[:2]  # 不会产生新的字符串  
  
a = bytearray('aaaaaa')  
ma = memoryview(a)  
ma.readonly  # 可写的memoryview  
mb = ma[:2]      # 不会会产生新的bytearray  
mb[:2] = 'bb'    # 对mb的改动就是对ma的改动  
  • Ellipsis类型
# 代码中出现...省略号的现象就是一个Ellipsis对象  
L = [1,2,3]  
L.append(L)  
print(L)    # output:[1,2,3,[…]]  
  • lazy惰性计算
class lazy(object):  
    def __init__(self, func):  
        self.func = func  
  
    def __get__(self, instance, cls):  
        val = self.func(instance)    #其相当于执行的area(c),c为下面的Circle对象  
        setattr(instance, self.func.__name__, val)  
        return val`  
  
class Circle(object):  
    def __init__(self, radius):  
        self.radius = radius  
  
    @lazy  
    def area(self):  
        print('evalute')  
        return 3.14 * self.radius ** 2  
  • 遍历文件,传入一个文件夹,将里面所有文件的路径打印出来(递归)
all_files = []      
def getAllFiles(directory_path):  
    import os                                         
    for sChild in os.listdir(directory_path):                  
        sChildPath = os.path.join(directory_path,sChild)  
        if os.path.isdir(sChildPath):  
            getAllFiles(sChildPath)  
        else:  
            all_files.append(sChildPath)  
    return all_files  
  • 文件存储时,文件名的处理
#secure_filename将字符串转化为安全的文件名  
from werkzeug import secure_filename  
secure_filename("My cool movie.mov") # output:My_cool_movie.mov  
secure_filename("../../../etc/passwd") # output:etc_passwd  
secure_filename(u'i contain cool \xfcml\xe4uts.txt') # output:i_contain_cool_umlauts.txt  
  • 日期格式化
from datetime import datetime  
  
datetime.now().strftime("%Y-%m-%d")  
  
import time  
#这里只有localtime可以被格式化,time是不能格式化的  
time.strftime("%Y-%m-%d",time.localtime())  
  • tuple使用+=奇怪的问题
# 会报错,但是tuple的值会改变,因为t[1]id没有发生变化  
t=(1,[2,3])  
t[1]+=[4,5]  
# t[1]使用append\extend方法并不会报错,并可以成功执行  
  • __missing__你应该知道
class Mydict(dict):  
    def __missing__(self,key): # 当Mydict使用切片访问属性不存在的时候返回的值  
        return key  
  • +与+=
# +不能用来连接列表和元祖,而+=可以(通过iadd实现,内部实现方式为extends(),所以可以增加元组),+会创建新对象  
#不可变对象没有__iadd__方法,所以直接使用的是__add__方法,因此元祖可以使用+=进行元祖之间的相加  
  • 如何将一个可迭代对象的每个元素变成一个字典的所有键?
dict.fromkeys(['jim','han'],21) # output:{'jim': 21, 'han': 21}

网络知识

  • 什么是 HTTPS?

  • 安全的 HTTP 协议,https 需要 cs 证书,数据加密,端口为443,安全,同一网站 https seo 排名会更高

  • 常见响应状态码

204 No Content //请求成功处理,没有实体的主体返回,一般用来表示删除成功  
206 Partial Content //Get范围请求已成功处理  
303 See Other //临时重定向,期望使用get定向获取  
304 Not Modified //请求缓存资源  
307 Temporary Redirect //临时重定向,Post不会变成Get  
401 Unauthorized //认证失败  
403 Forbidden //资源请求被拒绝  
400 //请求参数错误  
201 //添加或更改成功  
503 //服务器维护或者超负载  
  • http 请求方法的幂等性及安全性

  • WSGI

# environ:一个包含所有HTTP请求信息的dict对象  
# start_response:一个发送HTTP响应的函数  
def application(environ, start_response):  
    start_response('200 OK', [('Content-Type', 'text/html')])  
    return '

Hello, web!

'
  • RPC

  • CDN

  • SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议。

  • SSH(安全外壳协议) 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定;SSH 为建立在应用层基础上的安全协议。SSH 是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。SSH最初是UNIX系统上的一个程序,后来又迅速扩展到其他操作平台。SSH在正确使用时可弥补网络中的漏洞。SSH客户端适用于多种平台。几乎所有UNIX平台—包括HP-UX、Linux、AIX、Solaris、Digital UNIX、Irix,以及其他平台,都可运行SSH。

  • TCP/IP

  • 虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。

  • 因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,“你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

  • 三次握手(SYN/SYN+ACK/ACK)

  • 四次挥手(FIN/ACK/FIN/ACK)

  • TCP:面向连接/可靠/基于字节流

  • UDP:无连接/不可靠/面向报文

  • 三次握手四次挥手

  • 为什么连接的时候是三次握手,关闭的时候却是四次握手?

  • 为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

  • XSS/CSRF

  • HttpOnly 禁止 js 脚本访问和操作 Cookie,可以有效防止 XSS

Mysql

  • 索引改进过程

  • 线性结构->二分查找->hash->二叉查找树->平衡二叉树->多路查找树->多路平衡查找树(B-Tree)

  • Mysql面试总结基础篇

  • https://segmentfault.com/a/1190000018371218

  • Mysql面试总结进阶篇

  • https://segmentfault.com/a/1190000018380324

  • 深入浅出Mysql

  • http://ningning.today/2017/02/13/database/深入浅出mysql/

  • 清空整个表时,InnoDB是一行一行的删除,而MyISAM则会从新删除建表

  • text/blob数据类型不能有默认值,查询时不存在大小写转换

  • 什么时候索引失效

  • 应尽量避免在 where 子句中使用 != 或 <> 操作符,否则引擎将放弃使用索引而进行全表扫描

  • 尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,即使其中有条件带索引也不会使用,这也是为什么尽量少用 or 的原因

  • 如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不会使用索引

  • 应尽量避免在 where 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描

  • 对于多列索引,不是使用的第一部分,则不会使用索引

  • 以%开头的like模糊查询

  • 出现隐式类型转换

  • 没有满足最左前缀原则

  • 失效场景:

例如:  
select id from t where substring(name,1,3) = 'abc' – name;  
以abc开头的,应改成:  
select id from t where name like 'abc%'   
例如:  
select id from t where datediff(day, createdate, '2005-11-30') = 0'2005-11-30';  
应改为:  

不要在 where 子句中的 “=” 左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引

应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描

如
select id from t where num/2 = 100   
应改为:  
select id from t where num = 100*2

不适合键值较少的列(重复数据较多的列)比如:set enum列就不适合(枚举类型(enum)可以添加null,并且默认的值会自动过滤空格集合(set)和枚举类似,但只可以添加64个值)

如果MySQL估计使用全表扫描要比使用索引快,则不使用索引

  • 什么是聚集索引

  • B+Tree叶子节点保存的是数据还是指针

  • MyISAM索引和数据分离,使用非聚集

  • InnoDB数据文件就是索引文件,主键索引就是聚集索引

Redis 命令总结

  • 为什么这么快?

  • 因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)。

  • 基于内存,由 C 语言编写

  • 使用多路I/O复用模型,非阻塞 IO

  • 使用单线程减少线程间切换

  • 数据结构简单

  • 自己构建了 VM 机制,减少调用系统函数的时间

  • 优势

  • 性能高 – Redis 能读的速度是110000次/s,写的速度是81000次/s

  • 丰富的数据类型

  • 原子 – Redis 的所有操作都是原子性的,同时 Redis 还支持对几个操作全并后的原子性执行

  • 丰富的特性 – Redis 还支持 publish/subscribe(发布/订阅), 通知, key 过期等等特性

  • 什么是 redis 事务?

  • 将多个请求打包,一次性、按序执行多个命令的机制

  • 通过 multi,exec,watch 等命令实现事务功能

  • Python redis-py pipeline=conn.pipeline(transaction=True)

  • 持久化方式

  • save(同步,可以保证数据一致性)

  • bgsave(异步,shutdown时,无AOF则默认使用)

  • RDB(快照)

  • AOF(追加日志)

  • 怎么实现队列

  • push

  • rpop

  • 常用的数据类型(Bitmaps,Hyperloglogs,范围查询等不常用)

  • skiplist(跳跃表)

  • intset或hashtable

  • ziplist(连续内存块,每个entry节点头部保存前后节点长度信息实现双向链表功能)或double linked list

  • 整数或sds(Simple Dynamic String)

  • String(字符串):计数器

  • List(列表):用户的关注,粉丝列表

  • Hash(哈希):

  • Set(集合):用户的关注者

  • Zset(有序集合):实时信息排行榜

  • 与 Memcached 区别

  • Memcached只能存储字符串键

  • Memcached用户只能通过APPEND的方式将数据添加到已有的字符串的末尾,并将这个字符串当做列表来使用。但是在删除这些元素的时候,Memcached采用的是通过黑名单的方式来隐藏列表里的元素,从而避免了对元素的读取、更新、删除等操作

  • Redis和Memcached都是将数据存放在内存中,都是内存数据库。不过Memcached还可用于缓存其他东西,例如图片、视频等等

  • 虚拟内存–Redis当物理内存用完时,可以将一些很久没用到的Value 交换到磁盘

  • 存储数据安全–Memcached挂掉后,数据没了;Redis可以定期保存到磁盘(持久化)

  • 应用场景不一样:Redis出来作为NoSQL数据库使用外,还能用做消息队列、数据堆栈和数据缓存等;Memcached适合于缓存SQL语句、数据集、用户临时性数据、延迟查询数据和Session等

  • Redis实现分布式锁

  • 使用setnx实现加锁,可以同时通过expire添加超时时间

  • 锁的value值可以是一个随机的uuid或者特定的命名

  • 释放锁的时候,通过uuid判断是否是该锁,是则执行delete释放锁

  • 常见问题

  • 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级

  • 数据过期,进行更新缓存数据

  • 初始化项目,将部分常用数据加入缓存

  • 请求访问数据时,查询缓存中不存在,数据库中也不存在

  • 短时间内缓存数据过期,大量请求访问数据库

  • 缓存雪崩

  • 缓存穿透

  • 缓存预热

  • 缓存更新

  • 缓存降级

  • 一致性Hash算法

  • 使用集群的时候保证数据的一致性

  • 基于redis实现一个分布式锁,要求一个超时的参数

  • setnx

  • 虚拟内存

  • 内存抖动

Linux

  • Unix五种i/o模型

  • select

  • poll

  • epoll

  • 并发不高,连接数很活跃的情况下

  • 比select提高的并不多

  • 适用于连接数量较多,但活动链接数少的情况

  • 阻塞io

  • 非阻塞io

  • 多路复用io(Python下使用selectot实现io多路复用)

  • 信号驱动io

  • 异步io(Gevent/Asyncio实现异步)

  • 比 man 更好使用的命令手册

  • tldr:一个有命令示例的手册

  • kill -9和-15的区别

  • -15:程序立刻停止/当程序释放相应资源后再停止/程序可能仍然继续运行

  • -9:由于-15的不确定性,所以直接使用-9立即杀死进程

  • 分页机制(逻辑地址和物理地址分离的内存分配管理方案):

  • 操作系统为了高效管理内存,减少碎片

  • 程序的逻辑地址划分为固定大小的页

  • 物理地址划分为同样大小的帧

  • 通过页表对应逻辑地址和物理地址

  • 分段机制

  • 为了满足代码的一些逻辑需求

  • 数据共享/数据保护/动态链接

  • 每个段内部连续内存分配,段和段之间是离散分配的

  • 查看 cpu 内存使用情况?

  • top

  • free 查看可用内存,排查内存泄漏问题

设计模式

单例模式

# 方式一  
def Single(cls,*args,**kwargs):  
    instances = {}  
    def get_instance (*args, **kwargs):  
        if cls not in instances:  
            instances[cls] = cls(*args, **kwargs)  
        return instances[cls]  
    return get_instance  
@Single  
class B:  
    pass  
# 方式二  
class Single:  
    def __init__(self):  
        print("单例模式实现方式二。。。")  
  
single = Single()  
del Single  # 每次调用single就可以了  
# 方式三(最常用的方式)  
class Single:  
    def __new__(cls,*args,**kwargs):  
        if not hasattr(cls,'_instance'):  
            cls._instance = super().__new__(cls,*args,**kwargs)  
        return cls._instance  

工厂模式

class Dog:  
    def __init__(self):  
        print("Wang Wang Wang")  
class Cat:  
    def __init__(self):  
        print("Miao Miao Miao")  
  
  
def fac(animal):  
    if animal.lower() == "dog":  
        return Dog()  
    if animal.lower() == "cat":  
        return Cat()  
    print("对不起,必须是:dog,cat")  

构造模式

class Computer:  
    def __init__(self,serial_number):  
        self.serial_number = serial_number  
        self.memory = None  
        self.hadd = None  
        self.gpu = None  
    def __str__(self):  
        info = (f'Memory:{self.memoryGB}',  
        'Hard Disk:{self.hadd}GB',  
        'Graphics Card:{self.gpu}')  
        return ''.join(info)  
class ComputerBuilderdef __init__(self):  
        self.computer = Computer('Jim1996')  
    def configure_memory(self,amount):  
        self.computer.memory = amount  
        return self #为了方便链式调用  
    def configure_hdd(self,amount):  
        pass  
    def configure_gpu(self,gpu_model):  
        pass  
class HardwareEngineer:  
    def __init__(self):  
        self.builder = None  
    def construct_computer(self,memory,hdd,gpu)  
        self.builder = ComputerBuilder()  
        self.builder.configure_memory(memory).configure_hdd(hdd).configure_gpu(gpu)  
    @property  
    def computer(self):  
        return self.builder.computer  

数据结构和算法

python实现各种数据结构

快速排序

def quick_sort(_list):  
    if len(_list) < 2:  
        return _list  
    pivot_index = 0  
    pivot = _list(pivot_index)  
    left_list = [i for i in _list[:pivot_index] if i < pivot]  
    right_list = [i for i in _list[pivot_index:] if i > pivot]  
    return quick_sort(left) + [pivot] + quick_sort(right)  

选择排序

def select_sort(seq):  
    n = len(seq)  
    for i in range(n-1)  
    min_idx = i  
        for j in range(i+1,n):  
            if seq[j] < seq[min_inx]:  
                min_idx = j  
        if min_idx != i:  
            seq[i], seq[min_idx] = seq[min_idx],seq[i]  

插入排序

def insertion_sort(_list):  
    n = len(_list)  
    for i in range(1,n):  
        value = _list[i]  
        pos = i  
        while pos > 0 and value < _list[pos - 1]  
            _list[pos] = _list[pos - 1]  
            pos -= 1  
        _list[pos] = value  
        print(sql)  

归并排序

def merge_sorted_list(_list1,_list2):   #合并有序列表  
    len_a, len_b = len(_list1),len(_list2)  
    a = b = 0  
    sort = []  
    while len_a > a and len_b > b:  
        if _list1[a] > _list2[b]:  
            sort.append(_list2[b])  
            b += 1  
        else:  
            sort.append(_list1[a])  
            a += 1  
    if len_a > a:  
        sort.append(_list1[a:])  
    if len_b > b:  
        sort.append(_list2[b:])  
    return sort  
  
def merge_sort(_list):  
    if len(list1)<2:  
        return list1  
    else:  
        mid = int(len(list1)/2)  
        left = mergesort(list1[:mid])  
        right = mergesort(list1[mid:])  
        return merge_sorted_list(left,right) 

堆排序heapq模块

from heapq import nsmallest  
def heap_sort(_list):  
    return nsmallest(len(_list),_list)  

from collections import deque  
class Stack:  
    def __init__(self):  
        self.s = deque()  
    def peek(self):  
        p = self.pop()  
        self.push(p)  
        return p  
    def push(self, el):  
        self.s.append(el)  
    def pop(self):  
        return self.pop()  

队列

from collections import deque  
class Queue:  
    def __init__(self):  
        self.s = deque()  
    def push(self, el):  
        self.s.append(el)  
    def pop(self):  
        return self.popleft()  

二分查找

def binary_search(_list,num):  
    mid = len(_list)//2  
    if len(_list) < 1:  
        return Flase  
    if num > _list[mid]:  
        BinarySearch(_list[mid:],num)  
    elif num < _list[mid]:  
        BinarySearch(_list[:mid],num)  
    else:  
        return _list.index(num)  

面试加强题

  • 关于数据库优化及设计

  • 使用hash一致算法

  • setnx

  • setnx + expire

  • 使用redis

  • 如果InnoDB表的数据写入顺序能和B+树索引的叶子节点顺序一致的话,这时候存取效率是最高的。为了存储和查询性能应该使用自增长id做主键。

  • 对于InnoDB的主索引,数据会按照主键进行排序,由于UUID的无序性,InnoDB会产生巨大的IO压力,此时不适合使用UUID做物理主键,可以把它作为逻辑主键,物理主键依然使用自增ID。为了全局的唯一性,应该用uuid做索引关联其他表或做外键

  • https://segmentfault.com/a/1190000018426586

  • 如何使用两个栈实现一个队列

  • 反转链表

  • 合并两个有序链表

  • 删除链表节点

  • 反转二叉树

  • 设计短网址服务?62进制实现

  • 设计一个秒杀系统(feed流)?

  • https://www.jianshu.com/p/ea0259d109f9

  • 为什么mysql数据库的主键使用自增的整数比较好?使用uuid可以吗?为什么?

  • 如果是分布式系统下我们怎么生成数据库的自增id呢?

  • 基于redis实现一个分布式锁,要求一个超时的参数

  • 如果redis单个节点宕机了,如何处理?还有其他业界的方案实现分布式锁码?

缓存算法

  • LRU(least-recently-used):替换最近最少使用的对象

  • LFU(Least frequently used):最不经常使用,如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小

服务端性能优化方向

  • 使用数据结构和算法

  • 数据库

  • slow_query_log_file开启并且查询慢查询日志

  • 通过explain排查索引问题

  • 调整数据修改索引

  • 索引优化

  • 慢查询消除

  • 批量操作,从而减少io操作

  • 使用NoSQL:比如Redis

  • 网络io

  • 批量操作

  • pipeline

  • 缓存

  • Redis

  • 异步

  • Asyncio实现异步操作

  • 使用Celery减少io阻塞

  • 并发

  • 多线程

  • Gevent

最后:

Python学习资料

如果你想学习Python帮助你实现自动化办公,或者准备学习Python或者正在学习,下面这些你应该能用得上,有需要可以领取。

① Python所有方向的学习路线图,清楚各个方向要学什么东西
② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例,学习不再是只会理论
④ 华为出品独家Python漫画教程,手机也能学习
⑤历年互联网企业Python面试真题,复习时非常方便

文末有领取方式哦

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python课程视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

在这里插入图片描述

三、Python实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

四、Python漫画教程

用通俗易懂的漫画,来教你学习Python,让你更容易记住,并且不会枯燥乏味。
在这里插入图片描述

在这里插入图片描述

五、互联网企业面试真题

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要也可以扫描下方csdn官方二维码或者点击主页和文章下方的微信卡片获取领取方式,【保证100%免费】

你见过的最全面的Python重点知识总结!_第1张图片

你可能感兴趣的:(python,数据库,开发语言,爬虫,职场和发展,学习,大数据)