N——>BatchSize &&数据维度理解和处理(chun, cat, squeeze, unsqueeze)

数据处理之N——>BatchSize

N——>batch_size

train_data = TensorDataset(torch.Tensor(x_train).double(), torch.Tensor(y_train).double())
train_loader = DataLoader(train_data, batch_size=args.bs, shuffle=True, drop_last=True)
for batch_idx, (inputs, results) in enumerate(train_data):
	print(inputs.shape, results.shape) 

不过我得说,train_loader局限于第一维,做的事如下代码:

for i in range(0, num_samples, batch_size):
	batch = data[i:i + batch_size]
	yield batch

N——>BatchSize &&数据维度理解和处理(chun, cat, squeeze, unsqueeze)_第1张图片

维度

  • 分块:iter.chunk(分成几块,dim)
  • 连接:torch.cat( [ tensor1, tensor2 ](放在列表中),dim)
  • 升维1 / 降维1:squeeze(dim), unsqueeze(dim)

[64, 32, 1, 541]维度互换有影响吗?怎么去想这个事
数据本身并没有改变,只是数据在张量中的排列顺序发生了变化,也就是索引方式变了
例如,如果你将形状为[5266, 32, 541, 1]的张量的第3和第4维度交换,你得到的张量仍然包含相同的元素,但它们在张量中的排列方式不同,变成了形状为[5266, 32, 1, 541]的张量。这在某些情况下可能对特定的计算或模型操作更有用。
既然要求你按照什么样的维度去排列索引,而且你也知道每个数字代表的对应的是什么意思,你就直接按照他说的顺序去改就是了啊!

只要你给的数据的维度能对得上就没有任何问题,最主要的是首先要搞明白你需要几维的数据并搞明白每一维的意思,要对上,不然就会出现channel对到T上的尴尬问题。
s e q _ l e n seq\_len seq_len:序列长度
i n p u t _ s i z e input\_size input_size:序列的个体的维度
举一个例子,你的目的是要跑RNN,用RNNCELL,那么首先外部循环的肯定是seq_len,每次输入 [ b s , c h a n n e l , i n p u t _ s i z e ] [bs, channel, input\_size] [bs,channel,input_size]的数据到model里面。
那么如果如果提供的数据是 [ 5266 , 32 , 1 , 541 ] , N = 5266 [5266, 32, 1, 541],N = 5266 [5266,32,1,541]N=5266 s e q _ l e n = 32 , i n p u t _ s i z e = 541 , c h a n n e l = 1 seq\_len = 32, input\_size = 541, channel = 1 seq_len=32,input_size=541,channel=1
那么每一批次的维度比如是 [ 128 , 32 , 1 , 541 ] [128, 32, 1, 541] [128,32,1,541]
你的目标也就是得到每次的输入 [ 128 , 1 , 541 ] [128, 1, 541] [128,1,541]
按照第二个维度展开,即将第二个维度分成32个块——>pytorch带的chunk函数
用法:iter.chunk(要分的快数量,沿着哪个维度)

seq.chunk(seq.size(1), dim = 1)#传入的是seq.size(1)即要分成每个为1的

然后得到: [ 128 , 1 , 1 , 541 ] [128, 1, 1, 541] [128,1,1,541]
再使用seq.squeeze(1)

squeeze 函数有一个可选的参数,即 dim,它指定了要挤压的维度。如果指定 dim,则 squeeze
仅删除指定的维度,如果该维度大小为1。如果不指定 dim,则默认情况下会删除所有尺寸为1的维度。

没看懂的深浅拷贝,clone,copy etc.
https://www.jb51.net/article/201724.htm

你可能感兴趣的:(人工智能,python)