- 微软 LIDA 库:基于大模型的自动化数据分析与可视化
窝窝和牛牛
microsoft数据分析
微软LIDA库:基于大模型的自动化数据分析与可视化一、核心架构与LLM交互流程调用LLM生成数据摘要基于LLM推理分析目标LLM生成可视化代码结合图像生成模型优化原始数据Summarizer模块结构化摘要GoalExplorer模块可视化目标列表VizGenerator模块可执行图表代码Infographer模块风格化信息图表二、LLM交互核心功能1.多模型支持架构兼容主流LLM服务商:通过统一接
- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- 每天分析一个开源项目:open_deep_research
申非zz
LLMgithub开源
每天分析一个开源项目:open_deep_research项目链接:langchain-ai/open_deep_research项目介绍项目功能:OpenDeepResearch是一个基于LangGraph的Web研究助手,旨在帮助用户快速生成特定主题的综合性报告。它模拟了OpenAI和Gemini的DeepResearch流程,但提供了更强的自定义能力,允许用户配置模型、Prompt、报告结构
- Neo4j GDS-02-graph-data-science 插件库安装实战笔记
老马啸西风
neo4jneo4j笔记数据库图数据结构算法
neo4japoc系列Neo4jAPOC-01-图数据库apoc插件介绍Neo4jAPOC-01-图数据库apoc插件安装neo4jonwindows10Neo4jAPOC-03-图数据库apoc实战使用使用Neo4jAPOC-04-图数据库apoc实战使用使用apoc.path.spanningTree最小生成树Neo4jAPOC-05-图数据库apoc实战使用使用labelFilterNeo4
- Neo4j GDS-02-graph-data-science 简单聊一聊图数据科学插件库
老马啸西风
neo4jneo4j数据库算法图数据库开源
neo4japoc系列Neo4jAPOC-01-图数据库apoc插件介绍Neo4jAPOC-01-图数据库apoc插件安装neo4jonwindows10Neo4jAPOC-03-图数据库apoc实战使用使用Neo4jAPOC-04-图数据库apoc实战使用使用apoc.path.spanningTree最小生成树Neo4jAPOC-05-图数据库apoc实战使用使用labelFilter详细介绍
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- HCIA-AI人工智能笔记3:数据预处理
噗老师
华为认证人工智能笔记wpf数据处理AI华为认证
统讲解数据预处理的核心技术体系,通过Python/Pandas与华为MindSpore双视角代码演示,结合特征工程优化实验,深入解析数据清洗、标准化、增强等关键环节。一、数据预处理技术全景图graphTDA[原始数据]-->B{数据清洗}B-->B1[缺失值处理]B-->B2[异常值检测]B-->B3[重复值删除]A-->C{特征工程}C-->C1[标准化/归一化]C-->C2[离散化分箱]C--
- GPU计算的历史与CUDA编程入门
己见明
GPU计算CUDAC数据并行性CUDA程序结构向量加法内核
GPU计算的历史与CUDA编程入门背景简介GPU计算的历史可以追溯到早期的并行计算研究,如今已发展成为计算机科学中的一个重要分支。本文将探讨GPU计算的发展史,重点分析《ComputerGraphics:PrinciplesandPractice》等关键文献,以及CUDAC编程模型的引入及其对现代软件开发的影响。历史回顾回顾历史,GPU计算的发展始于1986年Hillis与Steele在《Comm
- TensorFlow和Pytorch在功能上的区别以及优势
Honeysea_70
#算法tensorflowpytorch人工智能
功能上的区别1.计算图TensorFlow:使用静态计算图(StaticGraph)。在运行模型之前,需要先构建完整的计算图,然后通过会话(Session)运行图。优点是性能优化更高效,适合大规模分布式训练和生产环境部署。缺点是调试相对复杂,因为计算图的构建和运行是分离的。PyTorch:使用动态计算图(DynamicGraph)。计算图是动态构建和执行的,每次迭代都会重新构建图。优点是调试方便,
- 深度学习与目标检测系列(六) 本文约(4.5万字) | 全面解读复现ResNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorch人工智能ResNet残差连接残差网络
文章目录解读Abstract—摘要翻译精读主要内容Introduction—介绍翻译精读背景RelatedWork—相关工作ResidualRepresentations—残差表达翻译精读主要内容ShortcutConnections—短路连接翻译精读主要内容DeepResidualLearning—深度残差学习ResidualLearning—残差学习翻译精读ResNet目的以前方法本文改进本质
- 《Java线程池深度解析:从核心参数到饱和策略实战》
云之兕
java基础入门到精通java开发语言
"线程池核心数设置多少合适?为什么任务队列满了会导致OOM?如何设计可降级的异步任务系统?"本文通过电商秒杀场景贯穿线程池参数调优全过程,结合ThreadPoolExecutor源码解析核心机制,并给出动态线程池与监控报警的最佳实践。一、线程池核心参数关系图解graphLRA[提交任务]-->B{核心线程是否已满?}B-->|否|C[创建核心线程执行]B-->|是|D{队列是否已满?}D-->|否
- 从MapRerankDocumentsChain迁移到LangGraph实现文档分析
bBADAS
服务器运维python
在分析长文本的场景中,MapRerankDocumentsChain提供了一种有效的策略。这种策略涉及以下步骤:将文本拆分为较小的文档。为文档集映射一个处理过程,该过程包括生成评分。根据评分对结果进行排名,并返回得分最高的结果。这种情况下的常见过程是使用文档中的上下文进行问答,强制模型生成评分以帮助选择只由相关上下文生成的答案。LangGraph的实现允许在此问题中集成工具调用和其他功能。下面我们
- QGraphicsView实现缩略图
vegetablesssss
QTqt
具体效果如下:meeting_quick_record基于C++QT实现,项目代码链接:缩略图
- 腾讯云Centos Stream 9 yum源
☆凡尘清心☆
腾讯云centos云计算
1.CentOS-Stream-BaseOS.repo#CentOS-Stream-BaseOS.repo##ThemirrorlistsystemusestheconnectingIPaddressoftheclientandthe#updatestatusofeachmirrortopickcurrentmirrorsthataregeographically#closetotheclient
- 强化学习中的深度卷积神经网络设计与应用实例
数字扫地僧
计算机视觉cnn人工智能神经网络
I.引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,通过与环境的交互来学习最优策略。深度学习,特别是深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNNs)的引入,为强化学习在处理高维度数据方面提供了强大工具。本文将探讨强化学习中深度卷积神经网络的设计原则及其在不同应用场景中的实例。II.深度卷积神经网络在强化学习中的
- 深度优先搜索和广度优先搜索详细解析和区别
潇杨爱吃粉
深度优先宽度优先算法数据结构
一、深度优先搜索(DFS)1.核心思想像探险家走迷宫,遇到岔路就选一条路走到头,无路可走时返回上一个岔路口换另一条路。2.实现方式数据结构:栈(Stack,先进后出)或递归(隐式栈)遍历顺序:纵向深入,优先访问最深层的节点3.图解示例假设有以下树结构:A/\BC/\/DEFDFS遍历顺序(从根节点A出发):A→B→D→E→C→F4.代码实现(Python)defdfs(graph,start):s
- 【深度学习】 PyTorch一文详解
Nerous_
深度学习深度学习pytorch人工智能机器学习python
“PyTorchisadeeplearningframeworkthatprioritizessimplicityandflexibility,makingitthego-tochoiceforbothresearchersanddevelopers.”—Anonymous1.PyTorch简介1.1PyTorch的背景与发展PyTorch是由Facebook人工智能研究院(FAIR)开发的一个开
- OpenCV图像拼接(1)自动校准之校准旋转相机的函数calibrateRotatingCamera()
村北头的码农
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::calibrateRotatingCamera是OpenCV中用于校准旋转相机的函数。它特别适用于那种相机相对于一个固定的场景进行纯旋转运动的情况,比如在全景拼接过程中。此函数可以从一系列单应性矩阵(HomographyMatrices)中
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- Flink启动任务
swg321321
flink大数据
Flink以本地运行作为解读例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Flink前言StreamExecutionEnvironmentLocalExecutorMiniClusterStreamGraph二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发
- CVPR 2024 | 低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力
小白学视觉
计算机顶会顶刊论文解读计算机视觉深度学习CVPR计算机顶会论文解读
论文信息题目:Low-ResLeadstheWay:ImprovingGeneralizationforSuper-ResolutionbySelf-SupervisedLearning低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力作者:HaoyuChen,WenboLi,JinjinGu,JingjingRen,HaozeSun,XueyiZou,ZhensongZhang,Youlia
- ACI EP Learning Whitepaper 1. ACI EP组件
m0_54931486
思科ACI网络思科ACIEndpointACIfabricNexusEP学习
1.ACIEndpointACI网络架构的Endpoint表整合了传统MAC地址表和ARP表的功能。其核心机制是通过硬件层直接学习数据包的源MAC地址与IP地址映射关系,摒弃了传统ARP协议依赖广播请求获取下一跳MAC地址的模式。这种设计优化体现在两方面:1)减少控制面ARP流量处理带来的资源消耗;2)基于终端实际流量即可实时感知主机IP/MAC地址的拓扑迁移,无需依赖GARP通告即可实现终端移动
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 使用vscode远程连接linux运行项目报错解决方案
大数据lsy
笔记vscodelinuxpython
报错:subprocess.CalledProcessError:Command'['/xxx/anaconda3/envs/graphinvent/bin/python','./graphinvent/main.py','--job-dir','/xxx/GraphINVENT/output_gdb13_1K/example/job_0/']'returnednon-zeroexitstatus
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- 一文梳理清楚Vsync/Choreographer/SurfaceFlinger/Surface/SurfaceHolder/硬件刷新频率关系
lpftobetheone
android
在Android应用开发中,流畅的UI体验是用户感知的核心。为了实现这一点,Android系统构建了一套复杂的图形渲染架构,涉及垂直同步信号(VSync)、编舞者(Choreographer)、硬件刷新频率、SurfaceFlinger、Surface和SurfaceHolder等多个关键组件。本文将深入解析这些组件的关系与工作流程,帮助你全面理解Android图形渲染的核心机制。总结起来,整个流
- Neo4j GDS-02-graph-data-science 插件库安装实战笔记
后端java
neo4japoc系列Neo4jAPOC-01-图数据库apoc插件介绍Neo4jAPOC-01-图数据库apoc插件安装neo4jonwindows10Neo4jAPOC-03-图数据库apoc实战使用使用Neo4jAPOC-04-图数据库apoc实战使用使用apoc.path.spanningTree最小生成树Neo4jAPOC-05-图数据库apoc实战使用使用labelFilterNeo4
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro