数据结构的基本操作

数据结构的基本操作

对于任何数据结构,其基本操作无非遍历 + 访问,再具体一点就是:增删查改。

数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。话说这不就是数据结构的使命么?

如何遍历 + 访问?我们仍然从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。

线性就是 for/while 迭代为代表,非线性就是递归为代表。再具体一步,无非以下几种框架:

数组遍历框架,典型的线性迭代结构:

void traverse(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        // 迭代访问 arr[i]
    }
}

链表遍历框架,兼具迭代和递归结构:

/* 基本的单链表节点 */
class ListNode {
    int val;
    ListNode next;
}

void traverse(ListNode head) {
    for (ListNode p = head; p != null; p = p.next) {
        // 迭代访问 p.val
    }
}

void traverse(ListNode head) {
    // 递归访问 head.val
    traverse(head.next);
}

二叉树遍历框架,典型的非线性递归遍历结构:

/* 基本的二叉树节点 */
class TreeNode {
    int val;
    TreeNode left, right;
}

void traverse(TreeNode root) {
    traverse(root.left);
    traverse(root.right);
}

你看二叉树的递归遍历方式和链表的递归遍历方式,相似不?再看看二叉树结构和单链表结构,相似不?如果再多几条叉,N 叉树你会不会遍历?

二叉树框架可以扩展为 N 叉树的遍历框架:

/* 基本的 N 叉树节点 */
class TreeNode {
    int val;
    TreeNode[] children;
}

void traverse(TreeNode root) {
    for (TreeNode child : root.children)
        traverse(child);
}

N 叉树的遍历又可以扩展为图的遍历,因为图就是好几 N 叉棵树的结合体。你说图是可能出现环的?这个很好办,用个布尔数组 visited 做标记就行了,这里就不写代码了。

所谓框架,就是套路。不管增删查改,这些代码都是永远无法脱离的结构,你可以把这个结构作为大纲,根据具体问题在框架上添加代码就行了。

例题

LeetCode 124 题,难度 Hard,让你求二叉树中最大路径和,主要代码如下:

int ans = INT_MIN;
int oneSideMax(TreeNode* root) {
    if (root == nullptr) return 0;
    int left = max(0, oneSideMax(root->left));
    int right = max(0, oneSideMax(root->right));
    ans = max(ans, left + right + root->val);
    return max(left, right) + root->val;
}

这就是个后序遍历

LeetCode 105 题,难度 Medium,让你根据前序遍历和中序遍历的结果还原一棵二叉树,很经典的问题吧,主要代码如下:

TreeNode buildTree(int[] preorder, int preStart, int preEnd, 
    int[] inorder, int inStart, int inEnd, Map inMap) {

    if(preStart > preEnd || inStart > inEnd) return null;

    TreeNode root = new TreeNode(preorder[preStart]);
    int inRoot = inMap.get(root.val);
    int numsLeft = inRoot - inStart;

    root.left = buildTree(preorder, preStart + 1, preStart + numsLeft, 
                          inorder, inStart, inRoot - 1, inMap);
    root.right = buildTree(preorder, preStart + numsLeft + 1, preEnd, 
                          inorder, inRoot + 1, inEnd, inMap);
    return root;
}

不要看这个函数的参数很多,只是为了控制数组索引而已,本质上该算法也就是一个前序遍历

LeetCode 99 题,难度 Hard,恢复一棵 BST,主要代码如下:

void traverse(TreeNode* node) {
    if (!node) return;
    traverse(node->left);
    if (node->val < prev->val) {
        s = (s == NULL) ? prev : s;
        t = node;
    }
    prev = node;
    traverse(node->right);
}

这就是个中序遍历。

对于一个理解二叉树的人来说,刷一道二叉树的题目花不了多长时间。那么如果你对刷题无从下手或者有畏惧心理,不妨从二叉树下手,前 10 道也许有点难受;结合框架再做 20 道,也许你就有点自己的理解了;刷完整个专题,再去做什么回溯动规分治专题,你就会发现只要涉及递归的问题,都是树的问题

动态规划凑零钱问题,暴力解法就是遍历一棵 N 叉树:

def coinChange(coins: List[int], amount: int):

    def dp(n):
        if n == 0: return 0
        if n < 0: return -1

        res = float('INF')
        for coin in coins:
            subproblem = dp(n - coin)
            # 子问题无解,跳过
            if subproblem == -1: continue
            res = min(res, 1 + subproblem)
        return res if res != float('INF') else -1

    return dp(amount)

这么多代码看不懂咋办?直接提取出框架,就能看出核心思路了:

# 不过是一个 N 叉树的遍历问题而已
def dp(n):
    for coin in coins:
        dp(n - coin)

其实很多动态规划问题就是在遍历一棵树,你如果对树的遍历操作烂熟于心,起码知道怎么把思路转化成代码,也知道如何提取别人解法的核心思路。

回溯算法就是个 N 叉树的前后序遍历问题,没有例外。

比如 N 皇后问题吧,主要代码如下:

void backtrack(int[] nums, LinkedList track) {
    if (track.size() == nums.length) {
        res.add(new LinkedList(track));
        return;
    }

    for (int i = 0; i < nums.length; i++) {
        if (track.contains(nums[i]))
            continue;
        track.add(nums[i]);
        // 进入下一层决策树
        backtrack(nums, track);
        track.removeLast();
    }

/* 提取出 N 叉树遍历框架 */
void backtrack(int[] nums, LinkedList track) {
    for (int i = 0; i < nums.length; i++) {
        backtrack(nums, track);
}

N 叉树的遍历框架,找出来了。

数据结构的基本存储方式就是链式和顺序两种,基本操作就是增删查改,遍历方式无非迭代和递归。

你可能感兴趣的:(数据结构,数据结构,算法,leetcode)