- 【原创】【4】【辅助工具】基于视觉模型+FFmpeg+MoviePy实现短视频自动化二次编辑+多赛道
三块钱0794
ffmpeg音视频自动化
主要功能目录选择-浏览选择包含视频的目录智能扫描-自动递归扫描所有视频文件️赛道管理-从文件夹名自动获取赛道或手动指定实时进度-显示扫描和导入的实时进度双数据库-支持SQLite(推荐)和MySQL重复检测-自动跳过已存在的视频文件使用场景示例假设您的视频目录结构是:D:\短视频\├──外国人系列\│├──1.mp4│├──2.mp4│└──3.mov├──美食系列\│├──美食1.mp4│└──
- GESP认证C++编程真题解析 | GESP202409 三级 单选题和判断题
热爱编程的通信人
历年GESPCSP-JCSP-S真题解析c++开发语言
欢迎大家订阅我的专栏:算法题解:C++与Python实现!本专栏旨在帮助大家从基础到进阶,逐步提升编程能力,助力信息学竞赛备战!专栏特色1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。适合人群:准备参加蓝桥杯、GESP、CSP-J、CS
- 第 4 部分 - 认证与权限
pythondjango
目前我们的API对于谁能编辑或删除代码片段没有任何限制。我们希望实现更高级的行为以确保:代码片段始终与创建者相关联。只有经过身份验证的用户才能创建片段。只有片段的创建者才能更新或删除它。未经过身份验证的请求应具有完全的只读访问权限。向模型中添加信息我们将在Snippet模型类中做一些更改。首先,让我们添加几个字段。其中的一个字段将用于表示创建代码片段的用户。另一个字段将用于存储代码的高亮HTML表
- 番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
小哥谈
YOLOv8:从入门到实战YOLO深度学习人工智能机器学习计算机视觉神经网络
前言:Hello大家好,我是小哥谈。SEAM(Squeeze-and-ExcitationAttentionModule)系列注意力机制是一种高效的特征增强方法,特别适合处理遮挡和小目标检测问题。该机制通过建模通道间关系来自适应地重新校准通道特征响应。在遮挡小目标检测中的应用优势包括:1)通道注意力增强:SEAM通过全局平均池化捕获通道级全局信息,帮助网络在遮挡情况下仍能关注关键特征。2)多尺度特
- 什么是IDS IPS以及IDS,IPS的区别
ke0hly
应急响应网络系统安全安全
目录IDS入侵检测系统定义工作原理主要功能主要类型:主动被动局限性:IPS入侵检测系统定义为什么会有IPS?功能主要类型主动被动IDS,IPS区别,选择IDS入侵检测系统定义入侵检测即通过从网络系统中的若干关键节点收集并分析信息,监控网络中是否有违反安全策略的行为或者是否存在入侵行为。入侵检测系统通常包含3个必要的功能组件:信息来源、分析引擎和响应组件。工作原理信息收集:信息收集包括收集系统,网络
- 目标追踪数据标注
sethrsinine
目标跟踪
在将YOLO(目标检测)和DeepSORT(目标追踪)结合时,数据标注需要同时满足检测和追踪的需求。以下是具体的分阶段标注策略和操作指南:一、标注的核心要求检测标注:每帧中目标的边界框(BoundingBox)和类别标签(如行人、车辆)。追踪标注:跨帧的目标ID(TrackID),确保同一目标在不同帧中ID一致。二、分阶段标注流程阶段1:视频预处理•目标:将视频转换为可标注的帧序列。•操作:使用F
- AI生成代码安全审计:从AST逆向到对抗样本生成
梦玄海
人工智能安全
引言随着Codex、Copilot等AI代码生成工具的普及,开发效率显著提升的同时,也引入了新型安全风险:模型生成的代码可能隐含漏洞(如SQL注入、XSS)、逻辑错误,或被恶意样本“投毒”。传统的静态扫描工具(如SonarQube)难以覆盖AI模型的上下文语义逻辑,亟需结合程序分析与AI对抗技术进行深度审计。本文将从AST逆向工程切入,深入探讨如何通过对抗样本检测AI生成代码的脆弱性。一、核心挑战
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- IDP单点登录流程
就叫飞六吧
java
单点登录(SSO,SingleSign-On)的核心是通过**统一的身份认证中心(IdentityProvider,IdP)**管理用户身份,避免用户在多个系统中重复登录。以下是基于IdP的认证思路及典型流程:一、核心角色IdentityProvider(IdP)负责认证用户身份(如输入用户名密码、短信验证、OAuth授权等)。颁发令牌(如SAML断言、JWT、OAuthToken)给服务提供方。
- 【目标检测】YOLOv13:超图增强的实时目标检测新标杆,值得收藏。
Carl_奕然
机器视觉与目标检测目标检测YOLO人工智能
一文掌握YOLOv13最新特性1、引言2、Yolov13详细讲解2.1发布时间与背景2.2相对于YOLOv12的核心提升2.2.1精度显著提升2.2.2轻量化与效率优化2.2.3高阶语义建模能力2.3架构设计与核心创新2.3.1超图自适应关联增强(HyperACE)2.3.2全流程聚合-分发(FullPAD)2.3.3轻量化模块设计2.4性能对比2.4代码示例2.4.1环境配置2.4.2训练代码2
- 掌握Python与LDAP在域认证中的应用
seiji morisako
本文还有配套的精品资源,点击获取简介:信息技术领域中的域认证机制利用LDAP协议实现用户身份验证。Python脚本语言通过python-ldap库与LDAP服务器交互,执行用户认证。本文将详细介绍Python如何使用python-ldap库进行LDAP连接、搜索、绑定操作,以及如何处理Web开发中的Cookie。学习这些技能有助于构建安全的用户登录系统和提升Web应用的用户体验。1.LDAP协议基
- 线程状态,优先级,守护线程基础详解
黑白极客
javajava多线程并发编程队列后端
线程状态,优先级,守护线程基础详解线程状态停止线程线程休眠线程礼让线程强制执行线程状态检测线程的优先级守护线程线程同步线程状态创建状态(new之后就是创建状态就绪状态(调用start方法之后调用状态(cpu调度之后阻塞状态(当调用sleep,wait,或同步锁时,线程进入阻塞状态,就是代码不往下执行。阻塞状态接触后,重新进入就绪状态,等待cpu的调度。)死亡状态(线程中断或者结束,一旦进入死亡状态
- 【Axum】Rust Web 高效构建:Axum 框架从入门到精通指南
LCG元
前端rust前端开发语言
目录一、环境准备与项目创建1.1安装Rust工具链1.2创建项目并添加依赖二、Axum核心架构解析三、项目结构设计四、核心代码实现4.1应用入口(src/main.rs)4.2数据模型(src/models.rs)4.3路由配置(src/routes.rs)4.4认证服务(src/services/auth.rs)4.5用户处理器(src/handlers.rs)4.6数据访问层(src/repo
- 基于PaddleOCR的表格识别系统开发
pk_xz123456
仿真模型深度学习算法深度学习开发语言分类安全cnn
基于PaddleOCR的表格识别系统开发1.项目概述本项目旨在使用PaddleOCR框架开发一个高性能的表格识别系统,能够准确识别约30种不同类型的表格结构。系统将处理2500张合成表格图像作为训练数据,并在合成测试集上进行评估。系统核心功能包括表格检测、表格结构识别和表格内容识别三部分。1.1项目背景表格是信息传递的重要载体,广泛存在于各类文档中。传统表格识别方法需要复杂的规则和模板,而基于深度
- RDK X5/X3 yolov5目标检测从环境搭建到设备集成
激萌の小宅
YOLOYOLO目标检测人工智能
1、RDKX5yolov5目标检测之训练环境搭建2、RDKX5yolov5目标检测之pt转onnx3、RDKX5yolov5目标检测之开发机环境部署4、RDKX5yolov5目标检测之onnx转bin5、RDKX5yolov5目标检测之开发板运行
- 口罩检测数据集-1591张图片疫情防控管理 智能门禁系统 公共场所安全监控
cver123
数据集目标跟踪人工智能计算机视觉目标检测pytorch
口罩检测数据集-1591张图片已发布目标检测数据集合集(持续更新)口罩检测数据集介绍数据集概览包含类别应用场景数据样本展示文件结构与使用建议使用建议技术标签YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参
- FastAPI安全认证的终极秘籍:OAuth2与JWT如何完美融合?
url:/posts/17d5c40ff6c84ad652f962fed0ce46ab/title:FastAPI安全认证的终极秘籍:OAuth2与JWT如何完美融合?date:2025-06-29T06:55:35+08:00lastmod:2025-06-29T06:55:35+08:00author:cmdragonsummary:FastAPI安全与认证实战指南深入解析了OAuth2协议的
- 汽车软件开发中不可或缺的ASPICE认证标准
在汽车软件开发中,ASPICE(AutomotiveSoftwareProcessImprovementandCapacityDetermination,汽车软件过程改进及能力评定)认证标准已成为不可或缺的关键要素,它为汽车软件的质量、可靠性以及开发效率提供了系统性保障。以下从ASPICE认证的核心价值、实施要点、行业影响及未来趋势等方面展开分析:一、ASPICE认证的核心价值提升软件质量与可靠性
- ASPICE认证与提升汽车软件代码质量:深入解析其关系
ASPICE(AutomotiveSPICE)认证与代码质量之间的关系是紧密且相辅相成的。以下是关于这两者关系的详细分析:(要明确的是:在ASPICE行业中专业来说,ASPICE项目是没有认证,而只有评估。不过,为了方便沟通,人们常将这一评估过程称为认证。)1.认证目标与代码质量的关系:ASPICE认证的目标是确保汽车软件开发过程中的质量。这包括了对软件开发流程、项目管理、需求分析、设计、编码、测
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- 弹幕系统开发实战:QT框架与VS2015源码解析
Paula-柒月拾
本文还有配套的精品资源,点击获取简介:本源码项目融合了三个关键技术领域:弹幕系统设计、Qt框架开发和VisualStudio2015集成。它详细阐述了弹幕系统的核心功能实现,包括弹幕数据结构、渲染、碰撞检测和用户交互。同时,本项目介绍了如何利用Qt5的信号与槽机制、GUI组件和绘图系统来开发弹幕效果,并展示了如何在VisualStudio2015中进行项目管理、编辑、调试和构建。此项目提供了全面的
- 基于YOLOv5的监控摄像头遮挡检测系统:从数据集到UI界面的完整实现
芯作者
D2:YOLOYOLO神经网络
实时守护监控设备安全,智能识别遮挡攻击的AI解决方案一、问题背景与系统价值在安防监控领域,摄像头遮挡是常见的恶意攻击手段——统计显示35%的安防失效源于摄像头被遮挡。传统方案依赖人工巡查,效率低下且响应延迟。本文将带你构建完整的AI遮挡检测系统,核心创新点:双模检测机制:YOLOv5目标检测+背景建模异常分析轻量化部署:模型量化压缩至1.8MB动态学习:运行时自动更新异常样本库二、系统架构设计[视
- 鸿蒙认证全攻略:流程与大纲深度剖析
目录一、鸿蒙认证,开启未来的科技密钥二、认证流程全解析(一)前期准备(二)报名步骤详解(三)备考阶段(四)考试当天(五)成绩查询与证书领取三、大纲深度解读(一)认证考试大纲的重要性(二)各部分知识点详细分析四、过来人经验分享(一)成功案例分析(二)常见问题与解决方案五、结语一、鸿蒙认证,开启未来的科技密钥在科技飞速发展的当下,鸿蒙系统已然成为全球科技领域的焦点之一。自问世以来,鸿蒙系统凭借其独特的
- HCCDA – AI华为云人工智能开发者认证-60道单选题题库及答案_华为人工智能入门级开发者认证题库
2401_89172925
人工智能华为云华为
单选题及答案AI模型的评测指标主要分为精度指标和性能指标,以下哪一项不属于常用的性能指标?A.FPS(FramesPerSecond)B.FLOPs(Floating-pointOperationsPerSecond)C.aPs(QueryPerSecond)D.F1值Mask_Detection技能模板提供了口罩检测技能,针对每个人,若没有检测到人脸,也没有检测到口罩,则会显示什么信息?A.No
- 三光吊舱激光测距模块技术解析!
云卓SKYDROID
无人机人工智能高科技云卓科技科普
一、激光测距模块运行方式1.脉冲式测距(直接ToF)原理:通过发射激光脉冲并计算其从发射到反射返回的时间差(Δt),利用公式距离=(光速×Δt)/2计算目标距离。适用场景:适用于远距离(如1~3km),但精度受大气衰减和噪声影响较大。典型参数:测程达3km,精度±2m(如SH150S1吊舱)。2.相位式测距(间接ToF)原理:对激光束进行幅度调制,通过检测发射波与反射波的相位差计算距离,精度可达毫
- Python编程:使用 YOLO 目标检测
倔强老吕
python开发语言
YOLO(YouOnlyLookOnce)是一种基于深度学习的实时目标检测算法,由JosephRedmon等人于2016年首次提出。与传统的两阶段目标检测方法(如R-CNN系列)不同,YOLO将目标检测任务视为一个单一的回归问题,直接在图像上进行一次推理即可预测边界框和类别概率。YOLO的核心思想单次前向传播(SingleShotDetection):YOLO只需对输入图像进行一次神经网络推理,就
- 基于YOLOv8和Faster R-CNN的输电线路异物目标检测项目 检测 输电线异物数据集 输电线缺陷数据集 绝缘子 如何使用YOLOv8和Faster R-CNN训练输电线路异物目标检测数据集
QQ67658008
YOLOr语言cnn输电线路绝缘子线路异物目标检测
电力篇-输电线路缺陷数据集输电线路异物目标检测数据集16000张5种检测目标:‘burst’-爆裂‘defect’-缺陷‘foreign_obj’-异物‘insulator’-绝缘体‘nest’-窝(巢)带标注-YOLO格式可直接用于YOLO系列目标检测算法模型训练如何使用YOLOv8和FasterR-CNN训练输电线路异物目标检测数据集的详细步骤和代码。假设数据集包含16000张图片和5种检测目
- 2024年03月CCF-GESP编程能力等级认证C++编程五级真题解析
码农StayUp
c++青少年编程CCFGESP
本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。一、单选题(每题2分,共30分)第1题唯一分解定理描述的内容是()?A.任意整数都可以分解为素数的乘积B.每个合数都可以唯一分解为一系列素数的乘积C.两个不同的整数可以分解为相同的素数乘积D.以上都不对答案:B【考纲知识点】唯一分解定理【解析】任何一个大于1的整数n都可以分解成若干个素因数的连
- Django实战:自定义中间件实现全链路操作日志记录
小王子1024
Django从入门到实战django中间件pythonvue
文章目录一、中间件介绍激活中间件生命周期二、自定义中间件中间件钩子函数基于类的中间件三、实战案例操作日志功能参考资料一、中间件介绍在Django中,中间件(Middleware)是一组轻量级、底层的插件系统,用于全局地改变Django的输入和输出。中间件可以在请求被处理之前和响应返回之前执行代码,从而实现各种功能,例如跨域资源共享(CORS)、用户认证、日志记录等。激活中间件若要激活中间件,需要添
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理