一起学数据结构(11)——快速排序及其优化

     上篇文章中,解释了插入排序、希尔排序、冒泡排序、堆排序及选择排序的原理及具体代码实现本片文章将针对快速排序,快速排序的几种优化方法、快速排序的非递归进行解释。

目录

1. 快速排序原理解析以及代码实现:

2. 如何保证相遇位置的值一定小于所对应的值:

3 优化最坏情况下快速排序的时间复杂度:

4. 对于快速排序代码书写格式的优化(挖坑法):

5. 对于快速排序代码的另一种书写格式优化(前后指针法): 


1. 快速排序原理解析以及代码实现:

给定下面一个数组:

一起学数据结构(11)——快速排序及其优化_第1张图片

       对于快速排序,其中心思想就是首先选取一个值,一般选择数组中最左边的数据,例如本数组中的6。创建一个变量,来保存这个值所对应的下标,为了方便表达,将这个变量命名为key

      在确定了key之后,分别从两头遍历数组,定义两个变量用于遍历数组,其中,left=0right=n-1

     对于遍历数组的过程,需要分成两种情况来查看。其中,left用于从左向右遍历数组,right用于从右向左遍历数组。当数组从左向右进行遍历时,一旦遇到比key所对应的值大的数据,则停left在这个数据的所对应的下标处。即:

一起学数据结构(11)——快速排序及其优化_第2张图片

当数组从右向左进行遍历时,一旦遇到比key所对应的值小的数据,则right停在这个数据的所对应的下标处。即:

一起学数据结构(11)——快速排序及其优化_第3张图片

在找到了符合上面规定的值后,交换两个值在数组中的位置:

一起学数据结构(11)——快速排序及其优化_第4张图片

接着继续向下遍历,并且重复之前的动作。当leftright相遇时,停止循环,此时的数组可以表示为:

一起学数据结构(11)——快速排序及其优化_第5张图片

最后,将key所对应的值,与此时left或者right所对应的值进行一次交换,便完成了整个流程,用图形表示为:

一起学数据结构(11)——快速排序及其优化_第6张图片 

 在进行了上面一整套流程后,此时的数组虽然还是无序,但是可以观察到,key所对应的值的右半部分的数组的值都大于key所对应的值。key左半部分数组的值都小于key所对应的值。

对于上述流程,可以用下面的代码进行表示:

 //部分快排
 int PortSort(int* a, int left, int right)
 {
	 int key = left;
	 while (left < right)
	 {
		 //先从右边开始找小的
		 while( left < right && a[right] >= a[key])
		 {
			 right--;
		 }

		 //再从左边开始找大的
		 while(left < right && a[left] <= a[key])
		 {
			 left++;
		 }

		 //交换找到的值
		 Swap(&a[left], &a[right]);
	 }
	 Swap(&a[key], &a[left]);

	 return left;
 }

对于上述给出的代码中,需要注意两个点:

1.在进行遍历数组寻找值的时候,必须先从右边开始遍历找小于key所对应的值的数据,再从左边找大于key所对应的值的数据,对于原因将会在文章的后面进行探讨

2.在遍历寻找值的while循环中,需要注意循环的两个条件,即left < right并且a[right] >= a[key],前面的条件是为了防止下面的两种情况:若从左向右遍历时,不存在比key对应的值大的数据,从右向左遍历时,不存在比key对应的值小的数据。以上两种情况均会导致left,right的范围超出数组下标的范围,对于第二个条件,如果不加上=,一旦在遍历的过程中,遇到了与key对应的值相等的值,会造成死循环。   

       完成了上述步骤后,数组依然是无序的,为了处理数组中其他的数据,需要利用到类似二叉树中递归的思想来实现:

       对于上述数组,他的数组左半部分的数据都是小于key所对应的值的,对于数组的右半部分的数据都是大于key所对应的值的,因此在下面的递归中,需要以key为分界线,key的左半部分为一组,右半部分为一组,对这两组值再次进行一次上面给出代码所对应的操作。

     例如,对于左半部分:

一起学数据结构(11)——快速排序及其优化_第7张图片

此时key所对应的值为3,按照上述代码进行操作后,数组可以表示为:

一起学数据结构(11)——快速排序及其优化_第8张图片

随后,再以key为分界线,分出左右部分,对于左右部分进行上述代码的操作,对于左半部分,进行一次操作后,可以表示为:

一起学数据结构(11)——快速排序及其优化_第9张图片

       此时,再向下进行递归,key的左半区间不存在,key的右半区间只有一个值。因此,对于上面两种情况,视作递归结束的条件。

      上面只是展示了每一次的递归中,数组的左半部分的情况,对于右半部分原理相同,这里不再进行赘述。当作伴部分,右半部分的递归都结束后,整个区间会变成有序的区间,即:

一起学数据结构(11)——快速排序及其优化_第10张图片

对于上述递归,可以用下列代码进行实现:

 void QuickSort(int* a, int begin, int end)
 {
	 if (begin >= end)
		 return;

	 int keyi = PortSort(a, begin, end);

	 QuickSort(a, begin, keyi - 1);
	 QuickSort(a, keyi + 1, end);
 }

测试函数如下:

void TestQuickSort()
{
	int e[] = { 6,1,2,7,9,3,4,5,10,8 };
	int size = sizeof(e) / sizeof(int);
	QuickSort(e, 0,size-1);
	printf("快速排序:");
	ArrayPrint(e, size);
}

结果如下:

一起学数据结构(11)——快速排序及其优化_第11张图片

2. 如何保证相遇位置的值一定小于key所对应的值:

       上面说到,在进行遍历寻找值这一步骤时,一定要先从右边开始向左遍历来找到比key对应的值小的值,再从左边向右开始遍历,来寻找比key对应值大的值,原因如下:

例如对于上面给出的数组,对于left,right相遇的前一步情况:

一起学数据结构(11)——快速排序及其优化_第12张图片

假设左边先进行遍历去寻找值,再从右边向左遍历来寻找值,则二者相遇的位置为:

一起学数据结构(11)——快速排序及其优化_第13张图片

此时,如果按照上面代码的内容对key对应的值和left位置对应的值进行交换,则:

一起学数据结构(11)——快速排序及其优化_第14张图片

此时,比key对应的值大的值不只是只存在右边。 

这里需要注意,先从右边往左边遍历的,对应的是key的位置在数组的左端。当key在数组的右端时,需要先从左边向右遍历。

3 优化最坏情况下快速排序的时间复杂度:

快速排序的时间复杂度一般都认为是O(nlogn),但是对于下面的一种情况:

前面说到,在快速排序中,当key取左端的值时,应该优先从右边开始遍历,对于例子中这种完全升序,或者说大部分区间都是升序的情况,每次从右端进行遍历时,都必须遍历到数组的最左边。因此,对于一个有n个数据的这样的数组来说,从右向左遍历的次数为n-1+n-1+n-3+.......次,这种情况下的快速排序的时间复杂度为O(n^2)。为了优化这种情况,这里引入三数取中的方法。代码如下:因为原理就是简单的两数相比,所以不做过多解释:

 //三数取中
 int GetMidi(int* a, int left, int right)
 {
	 int mid = (left + right) / 2;
	 if (a[left] < a[mid])
	 {
		 if (a[right] > a[mid])
		 {
			 return mid;
		 }
		 else if (a[left] > a[right])
		 {
			 return left;
		 }
		 else
		 {
			 return right;
		 }
	 }
	 else//(a[left] > a[mid];
	 {
		 if (a[mid] > a[right])
		 {
			 return mid;
		 }
		 else if (a[left] < a[right])
		 {
			 return left;
		 }
		 else
		 {
			 return right;
		 }
	 }
 }

 在构建了三数取中函数之后,需要对之前的快速排序代码进行修改。修改的部分为:首先在函数PortSort的开头创建一个变量mid用于接受三数取中函数GetMidi的返回值。接着,让mid对应的数值与后续key下标对应的数据(即最左端,或者最右端)用交换函数交换即可。

4. 对于快速排序代码书写格式的优化(挖坑法):

对于挖坑法,具体的实现原理如下:

首先还是确认key以及key所对应的值,例如在下面的例子中

(注:为了方便演示原理,下面的情况不包括三数取中,但是在书写代码时,使用三数取中的方法与上方的使用发放相同)

一起学数据结构(11)——快速排序及其优化_第15张图片

       首先确定一个key,这里按照左端处理,创建一个变量key,令key = 6,接着,确定key所在的下标就是第一个坑位。在确认了第一个坑位后,与上面的快速排序相同,都需要先从右端开始遍历来找到比key小的值,即:

一起学数据结构(11)——快速排序及其优化_第16张图片

随后,直接让right所指向的值覆盖到hole的位置,再让right指向的位置变成新的坑,即:

一起学数据结构(11)——快速排序及其优化_第17张图片

 再从左边向右进行遍历,找到比key小的值,并且让这个值覆盖到坑位hole中,再令下图中的left成为新的坑位:

一起学数据结构(11)——快速排序及其优化_第18张图片

 继续从右向左进行遍历,再从左向右遍历,直到left,right相遇为止,即:

一起学数据结构(11)——快速排序及其优化_第19张图片

最后,再令二者相遇的位置赋值key即可。然后再按照上面的思想递归即可。代码实现为:
 

//快排优化(挖坑法)
 int QuickDigSort(int* a, int begin, int end)
 {
	 int mid = GetMidi(a, begin, end);
	 Swap(&a[begin], &a[mid]);
	 int key = a[begin];
	 int hole = begin;
	 while (begin < end)
	 {
		 //先从右边开始找小的
		 while (begin < end && a[end] >= key)
		 {
			 end--;
		 }
		 a[hole] = a[end];
		 hole = end;
		 //再从左边开始找大的
		 while (begin < end && a[begin] <= key)
		 {
			 begin++;
		 }
		 a[hole] = a[begin];
		 hole = begin; 
	 }
	 a[hole] = key;
	 return hole;	
 }

void QuickSort2(int* a, int begin, int end)
 {
	 if (begin >= end)
		 return;

	 int keyi = QuickDigSort(a, begin, end);

	 QuickSort2(a, begin, keyi - 1);
	 QuickSort2(a, keyi + 1, end);
 }

测试函数如下:

void TestQuickDigSort()
{
	int f[] = { 6,1,5,3,9,10,7,4,2,8 };
	int size = sizeof(f) / sizeof(int);
	QuickSort2(f, 0, size - 1);
	printf("快速排序(挖坑法):");
	ArrayPrint(f, size);
}

运行结果如下:

一起学数据结构(11)——快速排序及其优化_第20张图片

 

5. 对于快速排序代码的另一种书写格式优化(前后指针法): 

        对于前后指针法,就是通过控制两个指针,这里分别命名为prev,cur。通过控制这两个指针的动作时序来完成对于数组的排序,中心思想如下:

       对于指针cur的作用,就是用来寻找比key小的值( key的意义与上面相同),对于指针prev的动作时序,分为下面两种情况: 当cur没有遇到比key大的值时,prev一直紧跟着cur,当cur遇到比key大的值后,令prev的位置处于这个值的前面。

       继续令cur向后遍历,如果又找到了比key小的值,则交换这个值,与prev后面的值。

例如对于下面的数组:

一起学数据结构(11)——快速排序及其优化_第21张图片

按照上面所说的思想,在cur没有遇到比key大的值时,prev一直紧跟着cur运动,即:

一起学数据结构(11)——快速排序及其优化_第22张图片

此时,再向下运动,cur遇到了比key大的值,令cur继续向后遍历,直至找到比key小的值,令prev停在比key大的值的前面,即:

一起学数据结构(11)——快速排序及其优化_第23张图片

再向下运动后,cur遇到了比key小的值,令prev后面的值与比key小的值交换,即:

一起学数据结构(11)——快速排序及其优化_第24张图片

接着继续向下遍历,此时prev,cur指向的位置为:

一起学数据结构(11)——快速排序及其优化_第25张图片

此时再对两个指针指向的值进行交换,即:

一起学数据结构(11)——快速排序及其优化_第26张图片

在遍历结束时,数组如下:

一起学数据结构(11)——快速排序及其优化_第27张图片

 在结束遍历后,交换prev位置的值与key的值,即:

一起学数据结构(11)——快速排序及其优化_第28张图片

交换完后,比key小的值都位于prev左边,比 key大的值都位于prev右边。

总览上面的整个过程,当遇到了比key大的值后,两个指针便开始拉开差距。此时cur每次向后遍历,都会找到一个比key大的值,并且形成一个比key大的值的区间,在其期间,prev一直保持不动,直到cur遇到一个key小的值,prev在向后指向第一个比key大的值并且交换,此后cur每找到一个key小的值,都会把之前key大的值置换到后面,把key小的值置换到前面。

代码如下:

 //快速排序(前后指针法)
 int QuickTailSort(int* a, int begin, int end)
 {
	 int key = begin;
	 int prev = begin, cur = begin+1;
	 while (cur <= end)
	 {
		 if (a[cur] < a[key])
		 {
			 Swap(&a[++prev], &a[cur]);
		 }
			 cur++;;
	 }
	 Swap(&a[key], &a[prev]);
	 return prev;
 }

测试函数如下:

void TestQuickTailSort()
{
	int g[] = { 5,1,6,9,3,10,4,7,2,8 };
	int size = sizeof(g) / sizeof(int);
	QuickSort3(g, 0, size - 1);
	printf("快速排序(挖坑法):");
	ArrayPrint(g, size);
}

运行结果如下:

一起学数据结构(11)——快速排序及其优化_第29张图片

你可能感兴趣的:(数据结构,算法,排序算法)