【MySQL】8.0新特性、窗口函数和公用表表达式

文章目录

    • 1. 新增特性
    • 2. 移除旧特性
      • 2.1 优点
      • 2.2 缺点
    • 3. 新特性1:窗口函数
      • 3.1 使用窗口函数前后对比
      • 3.2 窗口函数分类
      • 3.3 语法结构
      • 3.4 分类讲解
        • 3.4.1 序号函数
          • 3.4.1.1 ROW_NUMBER()函数
          • 3.4.1.2 RANK()函数
          • 3.4.1.3 DENSE_RANK()函数
        • 3.4.2 分布函数
          • 3.4.2.1 PERCENT_RANK()函数
          • 3.4.2.2 CUME_DIST()函数
        • 3.4.3 前后函数
          • 3.4.3.1 LAG(expr,n)函数
          • 3.4.3.2 LEAD(expr,n)函数
        • 3.4.4 首尾函数
          • 3.4.4.1 FIRST_VALUE(expr)函数
          • 3.4.4.2 LAST_VALUE(expr)函数
        • 3.4.5 其他函数
          • 3.4.5.1 NTH_VALUE(expr,n)函数
          • 3.4.5.2 NTILE(n)函数
    • 4. 新特征2:公用表表达式
      • 4.1 普通公用表表达式
      • 4.2 递归公用表表达式

1. 新增特性

  1. 更简便的NoSQL支持 NoSQL,泛指非关系型数据库和数据存储。随着互联网平台的规模飞速发展,传统的关系型数据库已经越来越不能满足需求。从5.6版本开始,MySQL就开始支持简单的NoSQL存储功能。MySQL 8对这一功能做了优化,以更灵活的方式实现NoSQL功能,不再依赖模式(schema)

  2. 更好的索引,在查询中,正确地使用索引可以提高查询的效率。MySQL 8中新增了 隐藏索引降序索引 。隐藏索引可以用来测试去掉索引对查询性能的影响。在查询中混合存在多列索引时,使用降序索引可以提高查询的性能

  3. 更完善的JSON支持,MySQL从5.7开始支持原生JSON数据的存储,MySQL 8对这一功能做了优化,增加了聚合函数 JSON_ARRAYAGG() 和 JSON_OBJECTAGG() ,将参数聚合为JSON数组或对象,新增了行内操作符 ->>,是列路径运算符 ->的增强,对JSON排序做了提升,并优化了JSON的更新操作

  4. 安全和账户管理,MySQL 8中新增了 caching_sha2_password 授权插件、角色、密码历史记录和FIPS模式支持,这些特性提高了数据库的安全性和性能,使数据库管理员能够更灵活地进行账户管理工作

  5. InnoDB的变化,InnoDB是MySQL默认的存储引擎 ,是事务型数据库的首选引擎,支持事务安全表(ACID),支持行锁定和外键。在MySQL 8 版本中,InnoDB在自增、索引、加密、死锁、共享锁等方面做了大量的 改进和优化 ,并且支持原子数据定义语言(DDL),提高了数据安全性,对事务提供更好的支持

  6. 数据字典,在之前的MySQL版本中,字典数据都存储在元数据文件和非事务表中。从MySQL 8开始新增了事务数据字典,在这个字典里存储着数据库对象信息,这些数据字典存储在内部事务表中

  7. 原子数据定义语句,MySQL 8开始支持原子数据定义语句(Automic DDL),即 原子DDL 。目前,只有InnoDB存储引擎支持原子DDL。原子数据定义语句(DDL)将与DDL操作相关的数据字典更新、存储引擎操作、二进制日志写入结合到一个单独的原子事务中,这使得即使服务器崩溃,事务也会提交或回滚。使用支持原子操作的存储引擎所创建的表,在执行DROP TABLE、CREATE TABLE、ALTER TABLE、RENAME TABLE、TRUNCATE TABLE、CREATE TABLESPACE、DROP TABLESPACE等操作时,都支持原子操作,即事务要么完全操作成功,要么失败后回滚,不再进行部分提交。 对于从MySQL 5.7复制到MySQL 8版本中的语句,可以添加 IF EXISTS 或 IF NOT EXISTS 语句来避免发生错误

  8. 资源管理,MySQL 8开始支持创建和管理资源组,允许将服务器内运行的线程分配给特定的分组,以便线程根据组内可用资源执行。组属性能够控制组内资源,启用或限制组内资源消耗。数据库管理员能够根据不同的工作负载适当地更改这些属性。 目前,CPU时间是可控资源,由“虚拟CPU”这个概念来表示,此术语包含CPU的核心数,超线程,硬件线程等等。服务器在启动时确定可用的虚拟CPU数量。拥有对应权限的数据库管理员可以将这些CPU与资源组关联,并为资源组分配线程。 资源组组件为MySQL中的资源组管理提供了SQL接口。资源组的属性用于定义资源组。MySQL中存在两个默认组,系统组和用户组,默认的组不能被删除,其属性也不能被更改。对于用户自定义的组,资源组创建时可初始化所有的属性,除去名字和类型,其他属性都可在创建之后进行更改。 在一些平台下,或进行了某些MySQL的配置时,资源管理的功能将受到限制,甚至不可用。例如,如果安装了线程池插件,或者使用的是macOS系统,资源管理将处于不可用状态。在FreeBSD和Solaris系统中,资源线程优先级将失效。在Linux系统中,只有配置了CAP_SYS_NICE属性,资源管理优先级才能发挥作用

  9. 字符集支持,MySQL 8中默认的字符集由 latin1 更改为 utf8mb4 ,并首次增加了日语所特定使用的集合,utf8mb4_ja_0900_as_cs

  10. 优化器增强,MySQL优化器开始支持隐藏索引和降序索引。隐藏索引不会被优化器使用,验证索引的必要性时不需要删除索引,先将索引隐藏,如果优化器性能无影响就可以真正地删除索引。降序索引允许优化器对多个列进行排序,并且允许排序顺序不一致

  11. 公用表表达式,公用表表达式(Common Table Expressions)简称为CTE,MySQL现在支持递归和非递归两种形式的CTE。CTE通过在SELECT语句或其他特定语句前 使用WITH语句对临时结果集 进行命名

WITH cte_name (col_name1,col_name2 ...) AS (Subquery)
SELECT * FROM cte_name;

Subquery代表子查询,子查询前使用WITH语句将结果集命名为cte_name,在后续的查询中即可使用cte_name进行查询

  1. 窗口函数,MySQL 8开始支持窗口函数。在之前的版本中已存在的大部分 聚合函数 在MySQL 8中也可以作为窗口函数来使用

【MySQL】8.0新特性、窗口函数和公用表表达式_第1张图片

  1. 正则表达式支持,MySQL在8.0.4以后的版本中采用支持Unicode的国际化组件库实现正则表达式操作,这种方式不仅能提供完全的Unicode支持,而且是多字节安全编码。MySQL增加了REGEXP_LIKE()、EGEXP_INSTR()、REGEXP_REPLACE()和 REGEXP_SUBSTR()等函数来提升性能。另外,regexp_stack_limit和regexp_time_limit 系统变量能够通过匹配引擎来控制资源消耗

  2. 内部临时表,TempTable存储引擎取代MEMORY存储引擎成为内部临时表的默认存储引擎 。TempTable存储引擎为VARCHAR和VARBINARY列提供高效存储。internal_tmp_mem_storage_engine会话变量定义了内部临时表的存储引擎,可选的值有两个,TempTable和MEMORY,其中TempTable为默认的存储引擎。temptable_max_ram系统配置项定义了TempTable存储引擎可使用的最大内存数量

  3. 日志记录,在MySQL 8中错误日志子系统由一系列MySQL组件构成。这些组件的构成由系统变量log_error_services来配置,能够实现日志事件的过滤和写入

  4. 备份锁,新的备份锁允许在线备份期间执行数据操作语句,同时阻止可能造成快照不一致的操作。新备份锁由 LOCK INSTANCE FOR BACKUP 和 UNLOCK INSTANCE 语法提供支持,执行这些操作需要备份管理员特权

  5. 增强的MySQL复制,MySQL 8复制支持对 JSON文档 进行部分更新的 二进制日志记录 ,该记录 使用紧凑的二进制格式 ,从而节省记录完整JSON文档的空间。当使用基于语句的日志记录时,这种紧凑的日志记录会自动完成,并且可以通过将新的binlog_row_value_options系统变量值设置为PARTIAL_JSON来启用

2. 移除旧特性

  1. 查询缓存已被移除
  2. 加密相关删除加密相关的内容
  3. 空间函数相关
  4. \N和NULL,在SQL语句中,解析器不再将\N视为NULL,所以在SQL语句中应使用NULL代替\N。这项变化不会影响使用LOAD DATA INFILE或者SELECT…INTO OUTFILE操作文件的导入和导出。在这类操作中,NULL仍等同于\N
  5. mysql_install_db
  6. 通用分区处理程序,通用分区处理程序已从MySQL服务中被移除。为了实现给定表分区,表所使用的存储引擎需要自有的分区处理程序。 提供本地分区支持的MySQL存储引擎有两个,即InnoDB和NDB,而在MySQL 8中只支持InnoDB
  7. 系统和状态变量信息,在INFORMATION_SCHEMA数据库中,对系统和状态变量信息不再进行维护。GLOBAL_VARIABLES、SESSION_VARIABLES、GLOBAL_STATUS、SESSION_STATUS表都已被删除。另外,系统变量show_compatibility_56也已被删除。被删除的状态变量有Slave_heartbeat_period、
    Slave_last_heartbeat,Slave_received_heartbeats、Slave_retried_transactions、Slave_running。以上被删除的内容都可使用性能模式中对应的内容进行替代
  8. mysql_plugin工具,mysql_plugin工具用来配置MySQL服务器插件,现已被删除,可使用–plugin-load或–plugin-load-add选项在服务器启动时加载插件或者在运行时使用INSTALL PLUGIN语句加载插件来替代该工具

2.1 优点

  1. 将经常使用的查询操作定义为视图,可以使开发人员不需要关心视图对应的数据表的结构、表与表之间的关联关系,也不需要关心数据表之间的业务逻辑和查询条件,而只需要简单地操作视图即可,极大简化了开发人员对数据库的操作

  2. 视图跟实际数据表不一样,它存储的是查询语句。所以,在使用的时候,我们要通过定义视图的查询语句来获取结果集。而视图本身不存储数据,不占用数据存储的资源,减少了数据冗余

  3. MySQL将用户对数据的 访问限制 在某些数据的结果集上,而这些数据的结果集可以使用视图来实现。用户不必直接查询或操作数据表。这也可以理解为视图具有 隔离性 。视图相当于在用户和实际的数据表之间加了一层虚拟表。

    同时,MySQL可以根据权限将用户对数据的访问限制在某些视图上,用户不需要查询数据表,可以直接通过视图获取数据表中的信息。这在一定程度上保障了数据表中数据的安全性

  4. 适应灵活多变的需求,当业务系统的需求发生变化后,如果需要改动数据表的结构,则工作量相对较大,可以使用视图来减少改动的工作量。这种方式在实际工作中使用得比较多

  5. 能够分解复杂的查询逻辑,数据库中如果存在复杂的查询逻辑,则可以将问题进行分解,创建多个视图获取数据,再将创建的多个视图结合起来,完成复杂的查询逻辑

2.2 缺点

如果我们在实际数据表的基础上创建了视图,那么,如果实际数据表的结构变更了,我们就需要及时对相关的视图进行相应的维护。特别是嵌套的视图(就是在视图的基础上创建视图),维护会变得比较复杂, 可读性不好 ,容易变成系统的潜在隐患。因为创建视图的 SQL 查询可能会对字段重命名,也可能包含复杂的逻辑,这些都会增加维护的成本;实际项目中,如果视图过多,会导致数据库维护成本的问题

3. 新特性1:窗口函数

MySQL从8.0版本开始支持窗口函数。窗口函数的作用类似于在查询中对数据进行分组,不同的是,分组操作会把分组的结果聚合成一条记录,而窗口函数是将结果置于每一条数据记录中

3.1 使用窗口函数前后对比

假设我现在有这样一个数据表,它显示了某购物网站在每个城市每个区的销售额:

CREATE TABLE sales(
id INT PRIMARY KEY AUTO_INCREMENT,
city VARCHAR(15),
county VARCHAR(15),
sales_value DECIMAL
);

INSERT INTO sales(city,county,sales_value)
VALUES
('北京','海淀',10.00),
('北京','朝阳',20.00),
('上海','黄埔',30.00),
('上海','长宁',10.00);

查询:

mysql> SELECT * FROM sales;
+----+------+--------+-------------+
| id | city | county | sales_value |
+----+------+--------+-------------+
| 1 | 北京 | 海淀 | 10 |
| 2 | 北京 | 朝阳 | 20 |
| 3 | 上海 | 黄埔 | 30 |
| 4 | 上海 | 长宁 | 10 |
+----+------+--------+-------------+
4 rows in set (0.00 sec)

需求:现在计算这个网站在每个城市的销售总额、在全国的销售总额、每个区的销售额占所在城市销售额中的比率,以及占总销售额中的比率

如果用分组和聚合函数,就需要分好几步来计算

第一步,计算总销售金额,并存入临时表 a:

CREATE TEMPORARY TABLE a -- 创建临时表
SELECT SUM(sales_value) AS sales_value -- 计算总计金额
FROM sales;

查看一下临时表 a :

mysql> SELECT * FROM a;
+-------------+
| sales_value |
+-------------+
| 70 |
+-------------+
1 row in set (0.00 sec)

第二步,计算每个城市的销售总额并存入临时表 b:

CREATE TEMPORARY TABLE b -- 创建临时表
SELECT city,SUM(sales_value) AS sales_value -- 计算城市销售合计
FROM sales
GROUP BY city;

查看临时表 b :

mysql> SELECT * FROM b;
+------+-------------+
| city | sales_value |
+------+-------------+
| 北京 | 30 |
| 上海 | 40 |
+------+-------------+
2 rows in set (0.00 sec)

第三步,计算各区的销售占所在城市的总计金额的比例,和占全部销售总计金额的比例。我们可以通过下面的连接查询获得需要的结果:

mysql> SELECT s.city AS 城市,s.county AS 区,s.sales_value AS 区销售额,
-> b.sales_value AS 市销售额,s.sales_value/b.sales_value AS 市比率,
-> a.sales_value AS 总销售额,s.sales_value/a.sales_value AS 总比率
-> FROM sales s
-> JOIN b ON (s.city=b.city) -- 连接市统计结果临时表
-> JOIN a -- 连接总计金额临时表
-> ORDER BY s.city,s.county;
+------+------+----------+----------+--------+----------+--------+
| 城市 | 区 | 区销售额 | 市销售额 | 市比率 | 总销售额 | 总比率 |
+------+------+----------+----------+--------+----------+--------+
| 上海 | 长宁 | 10 | 40 | 0.2500 | 70 | 0.1429 |
| 上海 | 黄埔 | 30 | 40 | 0.7500 | 70 | 0.4286 |
| 北京 | 朝阳 | 20 | 30 | 0.6667 | 70 | 0.2857 |
| 北京 | 海淀 | 10 | 30 | 0.3333 | 70 | 0.1429 |
+------+------+----------+----------+--------+----------+--------+
4 rows in set (0.00 sec)

结果显示:市销售金额、市销售占比、总销售金额、总销售占比都计算出来了

同样的查询,如果用窗口函数,就简单多了。我们可以用下面的代码来实现

mysql> SELECT city AS 城市,county AS 区,sales_value AS 区销售额,
-> SUM(sales_value) OVER(PARTITION BY city) AS 市销售额, -- 计算市销售额
-> sales_value/SUM(sales_value) OVER(PARTITION BY city) AS 市比率,
-> SUM(sales_value) OVER() AS 总销售额, -- 计算总销售额
-> sales_value/SUM(sales_value) OVER() AS 总比率
-> FROM sales
-> ORDER BY city,county;
+------+------+----------+----------+--------+----------+--------+
| 城市 | 区 | 区销售额 | 市销售额 | 市比率 | 总销售额 | 总比率 |
+------+------+----------+----------+--------+----------+--------+
| 上海 | 长宁 | 10 | 40 | 0.2500 | 70 | 0.1429 |
| 上海 | 黄埔 | 30 | 40 | 0.7500 | 70 | 0.4286 |
| 北京 | 朝阳 | 20 | 30 | 0.6667 | 70 | 0.2857 |
| 北京 | 海淀 | 10 | 30 | 0.3333 | 70 | 0.1429 |
+------+------+----------+-----------+--------+----------+--------+
4 rows in set (0.00 sec)

结果显示,我们得到了与上面那种查询同样的结果。使用窗口函数,只用了一步就完成了查询。而且,由于没有用到临时表,执行的效率也更高了。很显然,在这种需要用到分组统计的结果对每一条记录进行计算的场景下,使用窗口函数更好

3.2 窗口函数分类

【MySQL】8.0新特性、窗口函数和公用表表达式_第2张图片

【MySQL】8.0新特性、窗口函数和公用表表达式_第3张图片

3.3 语法结构

函数 OVER([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])

或者是

函数 OVER 窗口名 … WINDOW 窗口名 AS ([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])
  • OVER 关键字指定函数窗口的范围
    • 如果省略后面括号中的内容,则窗口会包含满足WHERE条件的所有记录,窗口函数会基于所有满足WHERE条件的记录进行计算
    • 如果OVER关键字后面的括号不为空,则可以使用如下语法设置窗口
  • 窗口名:为窗口设置一个别名,用来标识窗口
  • PARTITION BY子句:指定窗口函数按照哪些字段进行分组。分组后,窗口函数可以在每个分组中分别执行
  • ORDER BY子句:指定窗口函数按照哪些字段进行排序。执行排序操作使窗口函数按照排序后的数据记录的顺序进行编号
  • FRAME子句:为分区中的某个子集定义规则,可以用来作为滑动窗口使用

3.4 分类讲解

创建表

CREATE TABLE 
    goods 
    (
        id          INT PRIMARY KEY AUTO_INCREMENT,
        category_id INT,
        category    VARCHAR(15),
        NAME        VARCHAR(30),
        price       DECIMAL(10,2),
        stock       INT,
        upper_time  DATETIME
    );

添加数据:

INSERT INTO goods(category_id,category,NAME,price,stock,upper_time)
VALUES
(1, '女装/女士精品', 'T恤', 39.90, 1000, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '连衣裙', 79.90, 2500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '卫衣', 89.90, 1500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '牛仔裤', 89.90, 3500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '百褶裙', 29.90, 500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '呢绒外套', 399.90, 1200, '2020-11-10 00:00:00'),
(2, '户外运动', '自行车', 399.90, 1000, '2020-11-10 00:00:00'),
(2, '户外运动', '山地自行车', 1399.90, 2500, '2020-11-10 00:00:00'),
(2, '户外运动', '登山杖', 59.90, 1500, '2020-11-10 00:00:00'),
(2, '户外运动', '骑行装备', 399.90, 3500, '2020-11-10 00:00:00'),
(2, '户外运动', '运动外套', 799.90, 500, '2020-11-10 00:00:00'),
(2, '户外运动', '滑板', 499.90, 1200, '2020-11-10 00:00:00');
3.4.1 序号函数
3.4.1.1 ROW_NUMBER()函数

ROW_NUMBER()函数能够对数据中的序号进行顺序显示

举例:查询 goods 数据表中每个商品分类下价格降序排列的各个商品信息

SELECT 
    ROW_NUMBER() OVER ( PARTITION BY category_id ORDER BY price DESC) AS row_num, 
    goods.*
FROM 
    goods;

【MySQL】8.0新特性、窗口函数和公用表表达式_第4张图片

3.4.1.2 RANK()函数

使用RANK()函数能够对序号进行并列排序,并且会跳过重复的序号,比如序号为1、1、3

举例:使用RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息

SELECT 
    RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS rank_num,
    goods.* 
FROM 
    goods;

【MySQL】8.0新特性、窗口函数和公用表表达式_第5张图片

3.4.1.3 DENSE_RANK()函数

DENSE_RANK()函数对序号进行并列排序,并且不会跳过重复的序号,比如序号为1、1、2

SELECT 
    DENSE_RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS dense_rank_num,
    goods.* 
FROM 
    goods;

【MySQL】8.0新特性、窗口函数和公用表表达式_第6张图片

3.4.2 分布函数
3.4.2.1 PERCENT_RANK()函数

PERCENT_RANK()函数是等级值百分比函数。按照如下方式进行计算

(rank - 1) / (rows - 1)

其中,rank的值为使用RANK()函数产生的序号,rows的值为当前窗口的总记录数

举例:计算 goods 数据表中所有类别下的商品的PERCENT_RANK值

SELECT 
    RANK() OVER ( PARTITION BY category_id ORDER BY price DESC) AS rank_num, 
    PERCENT_RANK() OVER ( PARTITION BY category_id ORDER BY price DESC) AS percent_rank_num, 
    goods.*
FROM 
    goods;

【MySQL】8.0新特性、窗口函数和公用表表达式_第7张图片

3.4.2.2 CUME_DIST()函数

CUME_DIST()函数主要用于查询小于或等于某个值的比例:

举例:查询goods数据表中小于或等于当前价格的比例:

SELECT 
    CUME_DIST() OVER ( PARTITION BY category_id ORDER BY price DESC) AS cd, 
    goods.*
FROM 
    goods;

【MySQL】8.0新特性、窗口函数和公用表表达式_第8张图片

3.4.3 前后函数
3.4.3.1 LAG(expr,n)函数

LAG(expr,n)函数返回当前行的前n行的expr的值

举例:查询goods数据表中所有商品的前一个商品价格:

SELECT 
    LAG(price, 1) OVER w AS pre_price, 
    goods.*
FROM 
    goods
    WINDOW w AS (PARTITION BY category_id ORDER BY price)
    ;

【MySQL】8.0新特性、窗口函数和公用表表达式_第9张图片

3.4.3.2 LEAD(expr,n)函数

LEAD(expr,n)函数返回当前行的后n行的expr的值,与上面LAG函数类似,不再做演示

3.4.4 首尾函数
3.4.4.1 FIRST_VALUE(expr)函数

FIRST_VALUE(expr)函数返回第一个expr的值,参考LAG,只是取排序后第一个值

3.4.4.2 LAST_VALUE(expr)函数

LAST_VALUE(expr)函数返回最后一个expr的值,参考LAG,只是取排序后最后一个值

3.4.5 其他函数
3.4.5.1 NTH_VALUE(expr,n)函数

NTH_VALUE(expr,n)函数返回第n个expr的值,参考LAG,只是取排序后最后一个值

3.4.5.2 NTILE(n)函数

NTILE(n)函数将分区中的有序数据分为n个桶,记录桶编号

举例:将goods表中的商品按照价格分为3组

SELECT 
    NTILE(3) OVER (PARTITION BY category_id ORDER BY price) AS nt, 
    goods.*
FROM 
    goods;

【MySQL】8.0新特性、窗口函数和公用表表达式_第10张图片

4. 新特征2:公用表表达式

公用表表达式(或通用表表达式)简称为CTE(Common Table Expressions)。CTE是一个命名的临时结果集,作用范围是当前语句。CTE可以理解成一个可以复用的子查询,当然跟子查询还是有点区别的,
CTE可以引用其他CTE,但子查询不能引用其他子查询。所以,可以考虑代替子查询。依据语法结构和执行方式的不同,公用表表达式分为 普通公用表表达式递归公用表表达式 2 种

4.1 普通公用表表达式

普通公用表表达式的语法结构是:

WITH CTE名称
AS (子查询)
SELECT|DELETE|UPDATE 语句;

普通公用表表达式类似于子查询,不过,跟子查询不同的是,它可以被多次引用,而且可以被其他的普通公用表表达式所引用

举例:查询员工所在的部门的详细信息

mysql> SELECT * FROM departments
-> WHERE department_id IN (
-> SELECT DISTINCT department_id
-> FROM employees
-> );
+---------------+------------------+------------+-------------+
| department_id | department_name | manager_id | location_id |
+---------------+------------------+------------+-------------+
| 10 | Administration | 200 | 1700 |
| 20 | Marketing | 201 | 1800 |
| 30 | Purchasing | 114 | 1700 |
| 40 | Human Resources | 203 | 2400 |
| 50 | Shipping | 121 | 1500 |
| 60 | IT | 103 | 1400 |
| 70 | Public Relations | 204 | 2700 |
| 80 | Sales | 145 | 2500 |
| 90 | Executive | 100 | 1700 |
| 100 | Finance | 108 | 1700 |
| 110 | Accounting | 205 | 1700 |
+---------------+------------------+------------+-------------+
11 rows in set (0.00 sec)

4.2 递归公用表表达式

递归公用表表达式也是一种公用表表达式,只不过,除了普通公用表表达式的特点以外,它还有自己的特点,就是可以调用自己。它的语法结构是:

WITH RECURSIVE
CTE名称 AS (子查询)
SELECT|DELETE|UPDATE 语句;

递归公用表表达式由 2 部分组成,分别是种子查询和递归查询,中间通过关键字 UNION [ALL]进行连接。这里的种子查询,意思就是获得递归的初始值。这个查询只会运行一次,以创建初始数据集,之后递归查询会一直执行,直到没有任何新的查询数据产生,递归返回

案例:针对于我们常用的employees表,包含employee_id,last_name和manager_id三个字段。如果a是b的管理者,那么,我们可以把b叫做a的下属,如果同时b又是c的管理者,那么c就是b的下属,是a的下下属。

下面我们尝试用查询语句列出所有具有下下属身份的人员信息。

如果用我们之前学过的知识来解决,会比较复杂,至少要进行 4 次查询才能搞定:

  • 第一步,先找出初代管理者,就是不以任何别人为管理者的人,把结果存入临时表;
  • 第二步,找出所有以初代管理者为管理者的人,得到一个下属集,把结果存入临时表;
  • 第三步,找出所有以下属为管理者的人,得到一个下属集,把结果存入临时表;
  • 第四步,找出所有以下下属为管理者的人,得到一个结果集

如果第四步的结果集为空,则计算结束,第三步的结果集就是我们需要的下下属集了,否则就必须继续进行第四步,一直到结果集为空为止。比如上面的这个数据表,就需要到第五步,才能得到空结果集。而且,最后还要进行第六步:把第三步和第四步的结果集合并,这样才能最终获得我们需要的结果集

如果用递归公用表表达式,就非常简单了。我介绍下具体的思路:

  • 用递归公用表表达式中的种子查询,找出初代管理者。字段 n 表示代次,初始值为 1,表示是第一代管理者
  • 用递归公用表表达式中的递归查询,查出以这个递归公用表表达式中的人为管理者的人,并且代次的值加 1。直到没有人以这个递归公用表表达式中的人为管理者了,递归返回
  • 在最后的查询中,选出所有代次大于等于 3 的人,他们肯定是第三代及以上代次的下属了,也就是下下属了。这样就得到了我们需要的结果集

这里看似也是 3 步,实际上是一个查询的 3 个部分,只需要执行一次就可以了。而且也不需要用临时表保存中间结果,比刚刚的方法简单多了

WITH RECURSIVE cte
AS
(
SELECT employee_id,last_name,manager_id,1 AS n FROM employees WHERE employee_id = 100
-- 种子查询,找到第一代领导
UNION ALL
SELECT a.employee_id,a.last_name,a.manager_id,n+1 FROM employees AS a JOIN cte
ON (a.manager_id = cte.employee_id) -- 递归查询,找出以递归公用表表达式的人为领导的人
)
SELECT employee_id,last_name FROM cte WHERE n >= 3;

总之,递归公用表表达式对于查询一个有共同的根节点的树形结构数据,非常有用。它可以不受层级的限制,轻松查出所有节点的数据。如果用其他的查询方式,就比较复杂了

你可能感兴趣的:(MySQL,mysql,数据库)