- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- 华为OD机试 - 运输时间(Python/JS/C/C++ 2024 C卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述M辆车需要在一条不能超车的单行道到达终点,起点到终点的距离为N。
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- uni-app移动端应用开发底部安全区域适配
向凡而生
uni-app前端
针对IOS机型,底部安全区域是系统动态计算的,所以我们也需要动态获取底部安全区域来适配在uniapp的manifest.json,打开源码视图,对需要适配的页面添加如下配置"styles":{"safeArea":{"bottom":"auto"}}如果使用CSS。一种常见的方法是使用padding-bottom或margin-bottom属性,并使用vh-unit单位来确保底部安全距离不受屏幕尺
- python 实现 A* 算法
dev.null
Pythonpython算法开发语言
A*算法是一种广泛使用的路径搜索算法,结合了启发式搜索和Dijkstra算法的优点。它通过评估每个节点的代价函数(f(n)=g(n)+h(n))来选择最优路径,其中:(g(n))是从起点到当前节点的实际代价。(h(n))是从当前节点到目标节点的启发式估计代价(如曼哈顿距离或欧几里得距离)。以下是一个Python实现的A*算法示例:Python实现A*算法importheapqfrommathimp
- (二分 数学推导区间 两个数组的距离值)leetcode 1385
维齐洛波奇特利(male)
算法
数学推导:设arr1[i]=x则|x-arr2[j]|x+d而这个数t有三种可能1.刚好等于x-d不满足条件2.大于x-d但是小于等于x+d不满足条件3.大于x+d满足条件那arr2中小于t的值呢,因为t>=x-d所以arr2&arr1,vector&arr2,intd){sort(arr2.begin(),arr2.end());intans=0;for(autox:arr1){autot=ra
- 写给时间紧迫的软考高项考生:从真题、论文、资料到刷题
指尖疯
软考中高项大讲堂信息系统项目管理师软考高项
距离软考高项考试仅剩不到80天,备考时间紧迫,容错空间极小。有疯友建议让我写写备考的误区都有哪些,特别是致命的,毕竟前面提到过了,容错空间极小!今天就来系统聊聊这个话题。其实备考的误区有很多,但是致命的不能太多,所以我只说4个致命误区。误区一:按部就班学教材,脱离考试实战需求这个误区很常见,经常发生在追求完美的伙伴身上,哈哈。很多伙伴认为“教材学完=考试无忧”,于是花数月时间,逐页啃《信息系统项目
- BT、BT Mesh、WiFi、Zigbee技术对比分析
莫道桑榆晚-为霞尚满天
硬件工程网络协议信息与通信
一、蓝牙(Bluetooth,BT)1.技术原理核心概念:蓝牙是一种短距离(10-100米)无线通信技术,采用跳频扩频(FHSS)技术,通过快速切换频段(每秒1600次)避免干扰。跳频扩频(FHSS)原理:在2.4GHz频段的79个1MHz信道中,按伪随机序列快速切换频率。比喻:像两人在嘈杂派对上不断更换餐桌位置私聊,躲避他人监听。协议版本:经典蓝牙(BR/EDR):高功耗,支持音频传输(如耳机)
- STM32F407 SPI通信
Klein、凉城
STM32F407标准库stm32嵌入式硬件单片机
1、SPI介绍SPI(串行外设接口)是一种由摩托罗拉公司开发的同步串行通信协议,主要用于短距离、高速通信的场景(如芯片间通信)。其核心特点是主从架构、全双工通信和硬件简单,广泛应用于嵌入式系统中连接微控制器(MCU)与传感器、存储器(如EEPROMFlash)、显示屏、实时时钟和网络控制器等外设。SPI接口提供两个主要功能,支持SPI协议或I2S音频协议。默认情况下,选择的是SPI功能。可通过软件
- UNet 改进:添加Transformer注意力机制增强捕捉长距离依赖关系的能力
听风吹等浪起
AI改进系列transformer深度学习人工智能
目录1.Transformer注意力机制2.Unet改进3.代码1.Transformer注意力机制TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。多头注意力机制负责从输入序列中捕
- 【考研计算机网络】课堂笔记4 第四章 网络层_Network Layer
刘鑫磊up
#操作系统计算机网络计算机网络
文章目录:一:网络层的功能1.异构网络互联2.路由与转发功能3.拥塞控制二:数据交换方式三:路由算法1.静态路由与动态路由1.1静态路由算法(又称非自适应路由算法)1.2动态路由算法(又称自适应路由算法)2.动态路由算法2.1距离-向量路由算法2.2链路状态路由算法2.3层次路由四:IPV41.概述2.IPV4分组2.1IPV4分组格式2.2IP数据报分片2.3网络层转发分组的流程3IPV4地址与
- 笔试刷题专题(一)
英雄不问出处~
动态规划贪心字符串栈用字符串模拟栈
文章目录最小花费爬楼梯(动态规划)题解代码数组中两个字符串的最小距离(贪心(dp))题解代码点击消除题解代码最小花费爬楼梯(动态规划)题目链接题解1.状态表示:以i位置为结尾的最小花费2.状态转移方程:dp[i]=min(dp[i-1]+cost[i-1,dp[i-2]+cost[i-2])可以从i-1位置和i-2到达i位置注意dp[i]表示的是i位置之前的最小花费,还要加上该点的位置才是到达这个
- LoRa无线技术解析
wmq163
物联网lora
一、Lora技术基础与特点1、LoRa是一种低功耗广域网通信(LPWAN)技术中的一种,是Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输技术。比sigfox的FSK技术更加灵敏,传送距离更远,更节能。2、LoRa是物理层(PHY)协议,能被应用在几乎所有的网络技术中。3、LoRa模块主要在全球免费频段运行,频率范围从137MHz-1050MHz,常见的主要是433MHz、868M
- 外包项目的三大来源渠道及注意事项
后端
外包项目的三大来源渠道及注意事项在上一篇文章中,我们介绍了什么是外包以及外包的基本模式。今天,让我们深入探讨外包项目的主要来源渠道及其特点。一、朋友渠道特点:关系基础公司小伙伴推荐熟人介绍客户邀请合作优势:信任度高沟通成本低合作较为顺畅风险提示:避免因私人关系影响专业判断需要明确划分公私界限保持适当的业务距离二、家人渠道特点:亲朋帮忙情感因素强责任感较重注意事项:优势信任度最高沟通零障碍合作意愿强
- ⭐算法OJ⭐汉明距离【位操作】(C++ 实现)Total Hamming Distance
Vitalia
算法OJ算法c++开发语言
HammingDistance(汉明距离)是用于衡量两个等长字符串在相同位置上不同字符的个数的度量。它通常用于比较两个二进制字符串或编码序列的差异。定义给定两个长度相同的字符串AAA和BBB,它们的汉明距离D(A,B)D(A,B)D(A,B)是在相同位置上字符不同的位置的数量。示例二进制字符串:A=1011101B=1001001汉明距离D(A,B)=2D(A,B)=2D(A,B)=2(第3位和第
- Vue2+OpenLayers动态绘制两个经纬度并计算距离(提供Gitee源码)
黄团团
VueOpenLayersgiteejavascriptexceljavahtml前端
目录一、案例截图二、安装OpenLayers库三、代码实现3.1、初始化变量3.2、开始/结束绘制3.3、计算两点距离3.4、添加文本标注3.5、添加点3.6、添加线3.7、初始化地图点击事件3.8、加载地图3.9、完整代码四、Gitee源码一、案例截图二、安装OpenLayers库npminstallol三、代码实现页面代码如下:&l
- Vue2+OpenLayers点聚合功能实现(提供Gitee源码)
黄团团
VueOpenLayersvue.js前端数据库html
目录一、案例截图二、安装OpenLayers库三、代码实现3.1、初始化点位3.2、初始化VectorSource3.3、初始化Cluster3.4、初始化VectorLayer3.5、完整代码四、Gitee源码一、案例截图一定距离的点(可配置)系统会自动聚合:二、安装OpenLayers库npminstallol三、代码实现3.1、初始化点位这里返回一个Features集合,也就是点位集合。关键
- WPF中Grid自动布局
Now喔
WPFwpf
控件功能根据自定义行和列,快速进行排列,能够进行自定义控件间距离,减少元素进行定义间距,同时能更好的维护界面排序。代码部分usingSystem.ComponentModel;usingSystem.Windows;usingSystem.Windows.Controls;namespaceWPFApp{publicclassAutoGrid:Grid{//////列定义例如:"100,*,100
- 计算机考研408数据结构大题高频考点与真题解析
竹木有心
数据结构
一、线性表(顺序表与链表)1.1顺序表操作与算法设计高频考点:插入/删除操作的边界处理:检查下标越界与存储空间溢出子数组操作:合并、拆分、逆置等多数组综合问题:如寻找三元组最小距离真题示例:2020年408真题题目:给定三个升序数组S1、S2、S3,求所有可能的三元组(a,b,c)的最小距离D=|a−b|+|b−c|+|c−a|。解法:算法思想:三指针法遍历数组,每次移动当前最小元素的指针核心代码
- PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程AIGC自然语言处理
PyTorch深度学习框架进阶学习计划-第21天自然语言处理基础今天我们将深入学习自然语言处理(NLP)的基础概念,重点关注词嵌入技术、序列建模原理以及主流模型之间的区别和优缺点。通过理解这些基础知识,你将能够更好地应用PyTorch构建NLP应用。1.词嵌入原理与实现词嵌入(WordEmbeddings)是NLP中的核心概念,它将单词映射到连续向量空间,使得语义相似的词在向量空间中距离较近。为什
- Ae 效果详解:分形
MediaTea
Ae菜单:效果/生成/分形Generate/Fractal分形Fractal效果可生成曼德布罗特集和朱莉娅集的视觉效果,通常用于创作独特的抽象图案和动态纹理,广泛应用于背景生成和抽象视觉表现。本效果适用于8-bpc和16-bpc色深模式。◆◆◆效果属性说明当首次应用此效果时,所显示的图像为经典的曼德布罗特集合样本。其中黑色区域代表集合,集合之外的像素则根据其距离集合的远近被着色。点击“重置”Res
- YOLOv8改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含C2f二次创新)
Limiiiing
YOLOv8改进专栏YOLO计算机视觉深度学习目标检测
一、本文介绍本文记录的是基于EMA模块的YOLOv8目标检测改进方法研究。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv8的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。专栏目录:YOLOv8改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Ne
- opencv python 光流法
weixin_34241036
人工智能python
OpticalFlow光流法光流是由对象或相机的移动引起的两个连续帧之间的图像对象的明显运动的模式.它是2D矢量场,其中每个矢量是位移矢量,表示从第一帧到第二帧的点的移动.上图表示的是一个球在连续的5帧图像中的运动,箭头显示其位移矢量.光流法原理的基础:目标像素强度在连续帧之间不变相邻像素具有相似的运动第一帧的像素I(x,y,t),在dt时间之后的下一帧中移动距离(dx,dy),因为这些像素是相同
- PCL 点云迭代加权最小二乘法拟合平面(抑制噪声)
大鱼BIGFISH
点云进阶最小二乘法平面C++PCL迭代加权
文章目录一、简介二、实现代码三、实现效果参考资料一、简介受到之前博客的启发(Matlab点云最小二乘法拟合平面(剔除噪声)),我们不仅可以通过剔除一些异常点来拟合更为合适的平面,而且还可以在这个过程中对每个点进行加权来抑制噪声点,双管齐下也可以使得算法更具鲁棒性,并拟合出合适的平面,具体过程如下所示:1、首先使用加权的最小二乘法拟合一个平面系数的初值。2、计算所有有效点到拟合平面的距离did_i
- 第四章:ESP32零基础教学 - 4.1.3超声波传感器(HC-SR04)
龙大大L
ESP32arduino单片机嵌入式硬件c语言
在本篇博客中,我们将详细介绍如何使用ESP32微控制器与HC-SR04超声波传感器进行距离测量。我们将从硬件连接开始,逐步完成代码编写,并为每一行代码提供详细的注释。1.硬件准备所需材料ESP32开发板HC-SR04超声波传感器面包板连接线硬件连接将HC-SR04超声波传感器与ESP32开发板按照以下方式连接:VCC->3.3VGND->GNDTrig->GPIO5Echo->GPIO182.软件
- Adobe Firefly 技术浅析(二):Transformer生成模型
爱研究的小牛
AIGC——图像transformer深度学习人工智能AIGC机器学习
AdobeFirefly的图像生成技术不仅依赖于生成式对抗网络(GAN),还引入了基于Transformer的生成模型。Transformer模型在处理长距离依赖关系和生成复杂图像结构方面具有显著优势。1.基本原理1.1Transformer模型简介Transformer模型最初由Vaswani等人在2017年提出,用于自然语言处理(NLP)任务。其核心是自注意力机制(Self-Attention
- C++ 平面拟合原理和最小法实现示例
点云SLAM
算法数学c++平面线性代数平面拟合最小二乘法PCA算法
平面拟合算法的核心目标是从三维空间中的一组离散点中找到最优拟合平面,使得这些点到该平面的垂直距离之和最小。以下是平面拟合的详细原理及实现方法:1.平面方程表示三维平面的一般方程为:[Ax+By+Cz+D=0][Ax+By+Cz+D=0][Ax+By+Cz+D=0]其中:法向量:(n=(A,B,C))(\mathbf{n}=(A,B,C))(n=(A,B,C)),表示平面的朝向(通常归一化为单位向量
- 手机遥控开关技术解析与应用指南
zsmydz888
智能终端t-box智能手机安全开源
移动管家手机遥控开关,超小体积4G手机遥控开关支持APP控制,不限距离,适用于需长距离或跨区域控制的场景。GSM短信控制通过GSM控制器驱动继电器,以短信指令远程开关水泵、电饭煲等设备,支持状态查询与多手机号绑定。二、核心原理继电器驱动:WiFi/4G模块或GSM控制器通过接收手机指令驱动继电器,控制电路通断。红外信号匹配:手机红外功能模拟传统遥控器信号,需与目标设备品牌型号逐一
- N1学习打卡笔记
无涯学徒1998
学习笔记
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊Onhot编码one-hot编码的基本思想是将每个类别映射到一个向量,其中只有一个元素的值为1,其余元素的值为0。这样,每个类别之间就是相互独立的,不存在顺序或距离关系。例如,对于三个类别的情况,可以使用如下的one-hot编码:类别1:[1,0,0]类别2:[0,1,0]类别3:[0,0,1]这样的表示方式有助于模型更好地理解文本含义。
- 常见的点云数据的获取方式
我是瓦力
点云深度学习计算机视觉人工智能深度学习开发语言
1.激光雷达(LiDAR)获取方式:激光脉冲测距原理:激光雷达通过发射激光脉冲并接收反射信号来测量物体与传感器之间的距离。计算激光脉冲从发射到返回所需的时间,并将其转换为距离,从而生成三维点云数据。常用设备:车载激光雷达(如Velodyne、Ouster)无人机搭载激光雷达地面激光扫描仪(如Leica、Trimble)2.结构光扫描获取方式:投射光栅图案原理:结构光扫描仪向物体表面投射已知图案的光
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟