Hadoop学习总结-下篇(Yarn、调优、源码)

跟学尚硅谷Hadoop,自我总结

4 Yarn

4.1 概述 (面试重点)

Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式 的操作系统平台,而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序。

Hadoop学习总结-下篇(Yarn、调优、源码)_第1张图片

Hadoop学习总结-下篇(Yarn、调优、源码)_第2张图片

Hadoop学习总结-下篇(Yarn、调优、源码)_第3张图片

(1)MR 程序提交到客户端所在的节点。

(2)YarnRunner 向 ResourceManager 申请一个 Application。

(3)RM 将该应用程序的资源路径返回给 YarnRunner。

(4)该程序将运行所需资源提交到 HDFS 上。

(5)程序资源提交完毕后,申请运行 mrAppMaster。

(6)RM 将用户的请求初始化成一个 Task。

(7)其中一个 NodeManager 领取到 Task 任务。

(8)该 NodeManager 创建容器 Container,并产生 MRAppmaster。

(9)Container 从 HDFS 上拷贝资源到本地。

(10)MRAppmaster 向 RM 申请运行 MapTask 资源。

(11)RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分 别领取任务并创建容器。

(12)MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager 分别启动 MapTask,MapTask 对数据分区排序。

(13)MrAppMaster 等待所有 MapTask 运行完毕后,向 RM 申请容器,运行 ReduceTask。

(14)ReduceTask 向 MapTask 获取相应分区的数据。

(15)程序运行完毕后,MR 会向 RM 申请注销自己。

4.2 作业提交全流程 (面试重点)

Hadoop学习总结-下篇(Yarn、调优、源码)_第4张图片

作业提交全过程详解

(1)作业提交

第 1 步:Client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业。

第 2 步:Client 向 RM 申请一个作业 id。

第 3 步:RM 给 Client 返回该 job 资源的提交路径和作业 id。

第 4 步:Client 提交 jar 包、切片信息和配置文件到指定的资源提交路径。

第 5 步:Client 提交完资源后,向 RM

你可能感兴趣的:(Big,Data,hadoop,big,data,mapreduce,hdfs)